Pandas.DataFrame.std() 标准差 详解 含代码 含测试数据集 随Pandas版本持续更新

关于Pandas版本: 本文基于 pandas2.2.0 编写。

关于本文内容更新: 随着pandas的stable版本更迭,本文持续更新,不断完善补充。

传送门: Pandas API参考目录

传送门: Pandas 版本更新及新特性

传送门: Pandas 由浅入深系列教程

Pandas.DataFrame.std()

Pandas.DataFrame.std 方法用于返回行或列的标准差,默认 ddof=1 返回 样本标准差

计算公式:

  • 样本标准差公式 Pandas.DataFrame.std 默认的标准差计算方法是根号内以 n-1 为底,即样本标准差:

    s = ∑ i = 1 n ( x i − x ˉ ) 2 n − 1 s = \sqrt{\frac{\sum_{i=1}^{n}(x_i - \bar{x})^2}{n-1}} s=n1i=1n(xixˉ)2

    s s s 表示样本标准差, n n n 表示样本大小, x i x_i xi 表示每个观测值, x ˉ \bar{x} xˉ 表示样本均值。

  • 总体标准差公式

    σ = ∑ i = 1 N ( x i − μ ) 2 N \sigma = \sqrt{\frac{\sum_{i=1}^{N}(x_i - \mu)^2}{N}} σ=Ni=1N(xiμ)2

    σ \sigma σ 表示总体标准差, μ \mu μ 表示总体均值, N N N 表示总体大小。

语法:

DataFrame.std(axis=0, skipna=True, ddof=1, numeric_only=False, *kwargs)

返回值:

  • Series or DataFrame (if level specified)

    • 返回 SeriesDataFrame ,依传输的数据结构而定。

参数说明:

axis 指定计算方向(行或列)

  • axis : {0 or ‘index’, 1 or ‘columns’}, default 0

    axis 参数,用于指定计算方向,即按行计算或按列计算标准差:

    • 如果是 Series 此参数无效,将始终保持 axis=0,即计算整列的标准差。例1
    • 如果是 DataFrame 默认为 axis=0 即计算每一列的标准差。并有以下参值可选:
      • 0 or ‘index’: 计算每列的标准差。 例2
      • 1 or ‘columns’: 计算每行的标准差。例3

    ⚠️ 注意 :

    axis=None 已被标记为弃用,在未来的版本,将使用新的方法实现。

skipna 忽略缺失值

  • skipna : bool, default False >

    skipna 参数,用于指定求标准差的时候是否忽略缺失值:

    • False: 不忽略,缺失值 在求标准差的时候,会被解析为浮点数 float 0.0
    • True: 忽略缺失值。

    ⚠️ 注意 :

    如果整行或整列,都是缺失值,那么标准差结果是依然是NaN。 例4

numeric_only 排除非纯数值的行或列

  • numeric_only : bool, default False

    numeric_only 参数,用于控制是否 排除非纯数值的行或列:

    • False: 不排除。
    • True: 只对纯数值型的行或列计算标准差。例5

ddof 自由度修正

  • ddof : int, default 1 例6

    ddof : Delta 自由度,用于计算的除数是 N-ddof ,其中 N 代表元素的数量。默认 ddof=1

    • ddof=1 计算 样本标准差(默认)
    • ddof=0 计算 总体标准差
      • ddof=0 DataFrame.std 的行为和 numpy.std 一致。
  • ⚠️ddof 应该如何取值?:

    • 如果你准备计算标准差的数据,是某个总体数据集的一部分样本,你想通过这一部分样本对总体数据集的标准差进行无偏估计,则可以选择使 ddof=1 或保持默认。进行 样本标准差 的计算。
    • 如果你准备计算标准差的数据,就是你的总体数据集的全部,你可以选择使ddof=0 。进行 总体标准差 的计算。

相关方法:

➡️ 相关方法


  • Series.std

    标准差(样本标准差/总体标准差)

示例:

测试文件下载:

本文所涉及的测试文件,如有需要,可在文章顶部的绑定资源处下载。

若发现文件无法下载,应该是资源包有内容更新,正在审核,请稍后再试。或站内私信作者索要。

测试文件下载位置.png

测试文件下载位置

例1:如果是 Series 始终保持 axis=0,即计算整列的标准差。

import numpy as np
import pandas as pd

s = pd.Series([24.0, np.nan, 21.0, 33, 26], name="age")
s.std()
5.0990195135927845

例2、求 DataFrame 每列的样本标准差

import numpy as np
import pandas as pd

df = pd.DataFrame({'person_id': [0, 1, 2, 3],
                   'age': [21, 25, 62, 43],
                   'height': [1.61, 1.87, 1.49, 2.01]}
                  ).set_index('person_id')


df.std()
age       18.786076
height     0.237417
dtype: float64

例3、求 DataFrame 每行的样本标准差

import numpy as np
import pandas as pd

df = pd.DataFrame({'person_id': [0, 1, 2, 3],
                   'age': [21, 25, 62, 43],
                   'height': [1.61, 1.87, 1.49, 2.01]}
                  ).set_index('person_id')


df.std(axis=1)
person_id
0    13.710800
1    16.355380
2    42.787031
3    28.984307
dtype: float64

例4:如果整行或整列,都是缺失值,那么标准差计算结果也是缺失值。

import pandas as pd
import numpy as np

df = pd.DataFrame({"A": [0.5, 0.2], "B": ["a", 0.7], "C": [np.NaN, np.NaN]})

df.std(axis=0, numeric_only=True)
# ... A    0.212132
# ... C         NaN
# ... dtype: float64

C列由于都是缺失值,计算结果也是缺失值。

例5:numeric_only=True 只对数值类型的列求样本标准差。

import pandas as pd

df = pd.DataFrame({"A": [0.5, 1, 2], "B": ["a", "a", "a"], "C": [True, True, True]})

df.std(axis=0, numeric_only=True)

# ... A    0.763763
# ... C    0.000000
# ... dtype: float64

B列由于字符串,所以没有被计算标准差

例6:控制自由度修正值,当 ddof=0 将计算 总体标准差

观察计算每列样本标准差的结果

df = pd.DataFrame({'person_id': [0, 1, 2, 3],
                   'age': [21, 25, 62, 43],
                   'height': [1.61, 1.87, 1.49, 2.01]}
                  ).set_index('person_id')
df.std()
age       18.786076
height     0.237417
dtype: float64

观察计算每列总体标准差的结果

df.std(ddof=0)
age       16.269219
height     0.205609
dtype: float64
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数象限

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值