一、悬架建模的简化过程
汽车是一个复杂的振动系统,针对不同的需求进行不同的简化。在对悬架振动分析中,把汽车车身看做一个刚体,把驾驶员座椅和驾驶员拿掉;车身以下至车轮之间的橡胶垫,连接杆,弹簧等具有弹性和阻尼的元件,只保留弹簧和减振器;在车轮部分,由于车轮刚度跟车轮阻尼不是一个数量级的,所以忽略轮胎阻尼。这样下来,在我们平顺性分析中,汽车第一步就简化成了如下图所示:
在这个模型中,四个轮和车身各自有上下垂跳的自由度,车身还具有俯仰(绕y轴转动),侧倾(绕x轴转动)两个方向的旋转自由度,总共是5+2=7个自由度,也就是7自由度模型。
再进一步,假设左右轮的相关性很高,即左右轮输入基本一致,就可以忽略左右两边的相对运动,如下图所示:
在这个模型中,假设车辆总质量不变,车身前后俯仰的转动惯量Iy不变,系统简化成了只有前后轴和车身的跳动,车身俯仰,共4个自由度的模型。
在半车模型中,质量分为mf,mr和mc三个部分,即前轴质量,后轴质量和质心质量,每个部分分多少,与悬挂质量分配系数有关系。当悬挂质量分配系数为1时(大部分车接近于1),则中间的质量mc为0,此时,就可以把前后轴认为是各自独立运动的,这样又可以再进一步简化了,这便是我们最最常见的四分之一车悬架模型,它只有车轮和车身垂跳的自由度,叫二自由度模型。
下面,整合之前文章,我们更系统的梳理一下常规(没加控制)二、四、七自由度模型的建模与仿真。
二、 四分之一悬架建模与仿真
1、建立运动微分方程
z0是路面输入,z1和z2分别是车轮,车身位移,mw和mb分别为车轮,车身质量,Kt和Ks分别为轮胎和弹簧刚度,Cs为减振器阻尼。
根据牛顿第二定律,对于车轮:
根据牛顿第二定律,对于车身:
车辆配置参数如下:
mb=317.5; % 簧载质量 kg
mw=45.4; % 非簧载质量 kg
Ks=22000; % 悬架弹簧刚度 N/m
Kt=192000; % 轮胎刚度 N/m
Cs=[800,1200,1500,1800,2100]; % 减振器阻尼系数,设置4组,可以对比kN.s/m
2、建立simulink仿真模型
3、仿真分析
四分之一车模型被各种应用在半主动悬架算法的分析上,研究不同阻尼配置下车身,悬架行程,车轮动载对路面输入的响应,及它们三自身的频率分布很有意义,能够指导算法开发。
从上图可以看出,对于车身共振点,阻尼越大越好;对于车轮共振点,更改阻尼也无济于事;在车身与车轮共振点之间及车轮共振点之后,则是越小阻尼滤振效果越好,常规减振器单一阻尼无法兼顾,这也就是研究cdc半主动悬架的目标所在。
悬架行程。对比可发现,在车轮共振点附近,施加大阻尼可以提高性能。
轮胎动载,可以发现趋势与车身的相反。动载与车轮附着相关,车身垂向加速度与舒适性相关,这也体现另一个矛盾,驾驶性能与舒适性之间的矛盾。
另外传递曲线,教科书上普遍做法是由微分方程得到传递函数,再直接绘制传递函数的传递曲线,这样的曲线很光滑,写论文好看。
从更真实的角度出发,我们这里从系统仿真的结果来估算传递曲线。matlab中tfestimate函数可以帮我我们实现这个功能。
三、二分之一悬架建模与仿真
1、建立运动微分方程
推导过程可参考喻凡的汽车系统动力学
车辆参数如下:
2、建立仿真模型
同样是随机路面输入,通过模型仿真得到结果。
3、仿真分析
与前轴和后轴垂向加速度相比,车的质心垂向加速度出现多个波谷和波峰,这是由于路面输入与轴距关系引起的,叫轴距滤波。
悬架行程。
俯仰角,只有一个共振点。
四、全车悬架建模与仿真
1、建立微分方程
参考喻凡 车辆系统动力学
2、建立仿真模型
3、仿真分析
随机路面上轴距滤波效果非常明显。
与半车相比,俯仰角频率多了小共振峰,主要与左右路面差异有关系。
侧倾角。
五、关于模型与脚本
还是在某宝店铺<极简车辆控制>,运行m脚本一键出图,有需要的同学欢迎下单。
后台咨询的朋友很多,没有一一回复的还请见谅。