AI应用 - 给自己公司开发一个竞争对手跟踪系统 (包括变现方式) - Python

网上信息海量,多数人认为这些信息都是垃圾,实际上使用一些技术手,完全可以为公司筛选出有用的内容。开发一个企业竞争对手跟踪系统有非常实际的意义,主要包括以下几个部分:

1. 实时获取竞争情报

2. 优化决策和战略规划

3. 提前识别市场趋势

4. 提升业务敏捷性

5. 降低风险和避免失败

6. 提高市场定位和创新能力

7. 增强企业核心竞争力

今天我们主要来介绍这个系统开发的流程和技术实现,上面这些就不展开讲了,反正就是 辅助决策,提升企业核心竞争力。这看起来很空,但真地用好了,是很有价值的。

我们先来规划一下这个系统的流程:

流程简述:

  1. 确定领域:选择要跟踪的竞争对手、行业以及要跟踪的内容类型(如新闻、产品发布等)。
  2. 爬取内容:通过爬虫抓取相关新闻或信息。
  3. 结构化内容:对抓取的数据进行结构化处理,提取重要信息,如标题、发布时间、正文等。
  4. 对内容进行分类:将内容分为不同的类别,如“产品发布”、“财报”、“市场动态”等。
  5. 通过AI进一步理解和归纳:使用AI模型进行更深层次的分析,如情感分析、关键点提取等。
  6. 自动生成总结和报表:根据分类和分析结果,自动生成简要总结和周期性报表。
  7. 自动生成HTML页面:将报表和总结转换为HTML格式,生成可视化的页面。
  8. 自动群发报告:通过邮件、Slack等自动将生成的HTML报告发送给相关人员。

这可以作为一个整体框架,用于系统开发、自动化流程管理和持续跟踪的实现。

根据上面这个流程设计,我们再分别从以下几个方面进行详细阐述,并结合实际开发流程和代码示例:

1. 确定领域

首先,需要明确系统关注的具体领域。例如,竞争对手的产品发布、市场动态、财报信息、新闻报道等。这些领域会影响后续的爬取、结构化和分析。

  • 业务领域:选择具体的行业(如芯片、汽车、消费电子等)。
  • 竞争对手:选择要跟踪的竞争对手列表。
  • 内容种类:明确需要获取的内容类型(如新闻文章、产品信息、财报)。

2. 爬取内容

爬取内容通常是通过网页爬虫来获取,可以使用 requestsBeautifulSoup 等库进行网页抓取。

示例代码:

import requests
from bs4 import BeautifulSoup

def crawl_competitor_news(competitor_name):
    # 搜索竞争对手的新闻页面(示例)
    url = f"https://www.google.com/search?q={competitor_name}+news"
    headers = {'User-Agent': 'Mozilla/5.0'}
    
    response = requests.get(url, headers=headers)
    soup = BeautifulSoup(response.text, 'html.parser')
    
    news_links = []
    for item in soup.find_all('a', href=True):
        link = item['href']
        if 'news' in link:
            news_links.append(link)
    
    return news_links

# 示例:爬取竞争对手 "Tesla" 的新闻
news_links = crawl_competitor_news("Tesla")
print(news_links)

这个代码段的目的是爬取包含“Tesla”相关新闻的 Google 搜索结果页面,并提取其中的新闻链接。执行代码后,返回的 news_links 变量将是一个包含所有爬取到的新闻链接的列表。具体来说:

  1. url = f"https://www.google.com/search?q={competitor_name}+news"
    这一行构建了一个搜索URL,搜索的是竞争对手名字(如“Tesla”)加上关键词“news”,即查询“Tesla news”相关的信息。

  2. headers = {'User-Agent': 'Mozilla/5.0'}
    设置 User-Agent 请求头,以模仿正常浏览器请求,避免被 Google 阻止。

  3. response = requests.get(url, headers=headers)
    通过 requests.get 发送HTTP请求到Google,获取搜索结果页面。

  4. soup = BeautifulSoup(response.text, 'html.parser')
    使用 BeautifulSoup 解析HTML页面内容,提取页面上的所有链接。

  5. news_links = []
    初始化一个空的列表 news_links,用来存储新闻链接。

  6. for item in soup.find_all('a', href=True):
    遍历页面中所有带有 href 属性的 <a> 标签,意味着我们正在寻找所有链接。

  7. link = item['href']
    提取每个链接的 URL。

  8. if 'news' in link:
    过滤出链接中包含 news 字段的链接,假设这些链接与新闻相关。

  9. news_links.append(link)
    将满足条件的链接添加到 news_links 列表中。

实际获得的结果:

 

3. 结构化内容

爬取的内容往往是非结构化的,因此需要对其进行结构化处理。例如,提取标题、发布时间、正文内容、来源等信息。

示例代码:

def parse_news_content(news_url):
    response = requests.get(news_url)
    soup = BeautifulSoup(response.text, 'html.parser')
    
    title = soup.find('h1').text
    date = soup.find('time')['datetime']  # 获取发布日期
    content = soup.find('div', class_='article-content').text
    
    structured_content = {
        'title': title,
        'date': date,
        'content': content
    }
    
    return structured_content

# 示例:解析某个新闻链接
news_content = parse_news_content(news_links[0])
print(news_content)

这段代码是用来解析网页的,因为每个网页格式不一样,所以这里只做了一个示例,可以多谢一写规则来结构化网页,也可可以用现成的大模型api去解析你的网页地址(具体可以搜一下 有一些免费方法的) 

4. 对内容进行分类

爬取和结构化后,可以使用文本分类方法对内容进行分类。例如,可以使用机器学习或基于规则的方法来分类新闻内容。

  • 分类类别:例如,可以将新闻分为“产品发布”、“市场动态”、“财报”。
  • 工具选择:可以使用如 scikit-learnspaCy 或深度学习方法进行分类。

示例代码(使用简单的文本分类):

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB

# 假设已经有一个新闻内容的列表和对应的标签
news_titles = ["Tesla releases new car model", "Tesla's Q3 earnings report"]
labels = ['Product', 'Earnings']

# 向量化文本
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(news_titles)

# 使用朴素贝叶斯分类器
classifier = MultinomialNB()
classifier.fit(X, labels)

# 对新内容进行分类
new_news = ["Tesla announces new battery technology"]
X_new = vectorizer.transform(new_news)
predicted_category = classifier.predict(X_new)

print(predicted_category)  # 输出预测的类别

5. 通过 AI 进一步理解和归纳

AI 可以用来分析文本,提取关键点,或者进行情感分析等更深层次的理解。

  • 工具选择:可以使用 GPT-3、BERT、TextRank 等模型进行更深的理解与归纳。
  • 应用场景:例如,通过情感分析判断竞争对手新闻的情感倾向(积极、消极、中性)。

示例代码(使用 transformers 进行情感分析):

from transformers import pipeline

# 使用 Hugging Face 的预训练模型进行情感分析
classifier = pipeline('sentiment-analysis')

result = classifier("Tesla's new product is revolutionary!")
print(result)  # 输出情感分析结果

6. 自动生成总结内容和报表

根据分类和理解的结果,自动生成内容摘要,并生成相应的报表。例如,可以生成每周的竞争对手报告。

示例代码(自动生成简要总结):

def generate_summary(content):
    # 假设使用GPT-3或其他AI模型生成摘要
    # 这里仅使用简单的文本截取
    summary = content[:300] + "..."
    return summary

# 示例:生成新闻摘要
summary = generate_summary(news_content['content'])
print(summary)

7. 自动内容生成 HTML 页面

根据处理后的内容,可以自动生成 HTML 页面,方便展示或发送。

示例代码(生成 HTML):

def generate_html_report(news_data):
    html_content = f"""
    <html>
    <head><title>Competitor News Report</title></head>
    <body>
    <h1>Competitor News Report</h1>
    <h2>{news_data['title']}</h2>
    <p><strong>Published on:</strong> {news_data['date']}</p>
    <div>{news_data['content']}</div>
    </body>
    </html>
    """
    with open('competitor_report.html', 'w') as file:
        file.write(html_content)

# 生成 HTML 报告
generate_html_report(news_content)

8. 自动群发给相关人员

最后,生成的 HTML 页面或报告可以通过邮件、Slack 等方式自动群发给相关人员。

示例代码(使用 smtplib 发送邮件):

import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText

def send_email_report(recipient, subject, html_content):
    msg = MIMEMultipart()
    msg['From'] = 'your-email@example.com'
    msg['To'] = recipient
    msg['Subject'] = subject

    msg.attach(MIMEText(html_content, 'html'))

    # 发送邮件
    with smtplib.SMTP('smtp.example.com', 587) as server:
        server.starttls()
        server.login('your-email@example.com', 'password')
        server.sendmail(msg['From'], msg['To'], msg.as_string())

# 发送 HTML 报告
send_email_report('recipient@example.com', 'Competitor News Report', open('competitor_report.html').read())

通过以上步骤,您可以建立一个竞争对手跟踪系统,自动化爬取竞争对手的相关新闻、结构化内容、分类、分析、生成报告并自动发送给相关人员。整个流程可以通过编程和AI技术实现自动化,从而节省人力并提高效率。

变现

开发应用后,除了可以给自己公司用,让你升值加薪之外,还可以结合用户画像、市场需求和产品特点,使之产品化、最终变现:


1. 明确目标用户群体

  • 分析目标用户:基于应用的功能确定目标人群(如科技爱好者、新闻读者或特定行业的从业者)。
  • 细分市场:识别不同用户群体的需求,设计不同的推广策略。
    • 比如,如果是新闻类应用,可能关注特斯拉的消费者、股民、行业分析师等。

2. 制定推广策略

线上推广
  1. 社交媒体营销

    • 在社交平台(如微博、Twitter、LinkedIn)发布关于应用功能的内容。
    • 用有吸引力的标题和简洁的视频演示应用的核心功能。
    • 合作有影响力的KOL或KOC(意见领袖/消费者)推广。
  2. 内容营销

    • 撰写高质量的博客、新闻稿或案例分析,展示应用的独特功能。
    • 提供免费的教程或操作指南,让潜在用户轻松上手。
  3. 广告投放

    • 使用 Google Ads、Facebook Ads 等精准投放广告。
    • 选择目标受众:如关注特斯拉新闻或汽车科技的人群。
线下推广
  1. 行业会议与展会

    • 参加相关行业的展会,展示应用。
    • 提供现场体验,收集潜在客户反馈。
  2. 合作推广

    • 与相关领域的企业合作,互换流量或交叉推广。

3. 用户体验优化

  • 提供 免费试用或基础功能,让用户体验价值。
  • 设置激励机制:
    • 推荐奖励:用户邀请朋友使用后,双方获得优惠或奖励。
    • 积分体系:使用应用积累积分,可兑换礼品或解锁高级功能。

4. 变现策略

  1. 订阅服务

    • 提供基础功能免费,高级功能或去广告版本需要订阅。
    • 订阅选项如按月、按年收费,增加灵活性。
  2. 广告收入

    • 在不影响用户体验的情况下,嵌入定向广告。
    • 使用 Google AdSense 或类似服务获取广告收入。
  3. 付费版本

    • 提供专业版或定制服务,针对企业用户需求。
    • 可按用户数量或功能模块收费。
  4. 数据服务

    • 提供行业趋势分析、新闻数据导出等增值服务,向企业或研究机构收费。
  5. 联盟营销

    • 和其他产品合作,应用内植入合作方的服务或链接,按点击或注册收费。

5. 用户增长与留存

  • 持续更新内容:例如,加入热点新闻、特斯拉行业预测等内容,增强用户黏性。
  • 定期互动
    • 推送个性化消息,提醒用户使用。
    • 在社交媒体上与用户交流,收集反馈。
  • 运营活动
    • 举办抽奖、活动或用户挑战赛,提高用户参与度。

6. 分析与调整

  • 使用数据分析工具(如 Google Analytics、Mixpanel)追踪用户行为,分析:
    • 用户来源、留存率、支付转化率等。
    • 根据数据不断优化推广策略和应用功能。

7. 案例借鉴

  • 参考类似产品
    • 比如 Flipboard(新闻聚合)和 TeslaFi(特斯拉数据分析工具)的推广与变现方式。
  • 小范围测试
    • 在一小部分市场投放,测试不同策略的效果,逐步扩展。

通过以上策略,逐步扩大用户群体,增强品牌效应,建立多元化的收入渠道,实现长期变现目标。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值