论文笔记《Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network》

本文提出一种新的交通流量预测框架ST-GDN,利用自注意力机制处理多尺度时间依赖性,并通过图扩散网络捕捉区域间复杂的空间关系。该模型能够学习局部及全局的空间依赖性,适用于城市交通流量预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【文章】Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network
【作者】Zhang X, Huang C, Xu Y, et al.
【来源】AAAI 2021
【代码】https://github.com/jillbetty001/ST-GDN

现存问题

  • 大多数研究聚焦于临近区域的近邻空间相关性,忽略了全局地理上下文信息
  • 大多数研究无法对具有时间依赖性和多分辨率的复杂流量转移规律进行编码

本文概览

提出名为 Spatial-Temporal Graph Diffusion Network, ST-GDN 的交通流量预测框架,该模型具备特点:

  • 能学习到局部 region-wise 空间依赖性
  • 能从全局角度表征空间语义信息
  • 多尺度 attention 网络能捕获 multi-level 时间动态性

本文方法

Problem Definition

  • 将城市分成 I ∗ J I * J IJ 互不相交区域, r i , j r_{i,j} ri,j 表示一个空间区域
  • X ∈ R I × J × T \boldsymbol{X} \in \mathbb{R}^{I \times J \times T} XRI×J×T 中每个 x i , j t x_{i,j}^t xi,jt 表示区域 r i , j r_{i,j} ri,j t t t time slot(e.g. hour or day) 的流量。 X α \boldsymbol{X}^{\alpha} Xα 表示入流, X β \boldsymbol{X}^{\beta} Xβ 表示出流。

Methodology

在这里插入图片描述

Temporal Hierarchy Modeling

该部分和 ST-ResNet 一样,将时间轴分为 hour, day, week 三部分, T p T_p Tp 表示序列数据的分辨率, x i , j T p \mathbf{x}_{i, j}^{T_{p}} xi,jTp 即表示当前分辨率下的流量序列。该部分在建模上使用 自注意力机制 编码,补充(参考 邱锡鹏,神经网络与深度学习,机械工业出版社,https://nndl.github.io/, 2020.):

假设输入序列为 X = [ x 1 , ⋯   , x N ] ∈ R D x × N \boldsymbol{X}=\left[\boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{N}\right] \in \mathbb{R}^{D_{x} \times N} X=[x1,,xN]RDx×N,输出序列为 H = [ h 1 , ⋯   , h N ] ∈ R D v × N \boldsymbol{H}=\left[\boldsymbol{h}_{1}, \cdots, \boldsymbol{h}_{N}\right] \in\mathbb{R}^{D_{v} \times N} H=[h1,,hN]RDv×N

  • 针对每个输入 x i x_i xi,将其线性映射到三个不同空间,映射过程可简写为: Q = W q X ∈ R D k × N K = W k X ∈ R D k × N V = W v X ∈ R D v × N \begin{array}{l} \boldsymbol{Q}=\boldsymbol{W}_{q} \boldsymbol{X} \in \mathbb{R}^{D_{k} \times N} \\ \boldsymbol{K}=\boldsymbol{W}_{k} \boldsymbol{X} \in \mathbb{R}^{D_{k} \times N} \\ \boldsymbol{V}=\boldsymbol{W}_{v} \boldsymbol{X} \in \mathbb{R}^{D_{v} \times N} \end{array} Q=WqXRDk×NK=Wk
### MATLAB 实现时空图卷积网络用于交通流量预测 为了实现《Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting》中的方法,需要构建一个能够处理时空数据的框架。该框架主要由以下几个部分组成: #### 1. 数据预处理 在开始之前,需准备并清理交通流量数据集。这通常涉及缺失值填充、标准化以及创建邻接矩阵。 ```matlab % 假设 data 是 N x T 的矩阵, 其中 N 表示节点数, T 表示时间步长. data = load('traffic_data.mat'); % 加载交通流量数据 adj_matrix = create_adjacency_matrix(data); % 创建邻接矩阵函数 normalized_data = normalize_traffic_data(data); % 归一化交通流量数据 ``` #### 2. 构建图结构 通过定义道路之间的连接关系来建立图结构。这里使用邻接矩阵表示图的关系。 ```matlab function adj_matrix = create_adjacency_matrix(road_network) % road_network 应包含路段间距离或其他衡量标准的信息 distances = calculate_distances_between_roads(road_network); threshold = determine_threshold(distances); % 设定阈值 [N, ~] = size(distances); adj_matrix = zeros(N); for i = 1:N for j = 1:N if distances(i,j) <= threshold && i ~= j adj_matrix(i,j) = exp(-distances(i,j)^2 / (2*threshold^2)); end end end end ``` #### 3. 定义 ST-GCN 层 ST-GCN 结合了空间上的 GCN 和时间维度上的 CNN 来捕捉复杂的时空模式[^3]. ```matlab classdef STGCNLayer < nnet.layer.Layer properties K; % 支持的最大阶数 F_in; F_out; W; b; end methods function layer = STGCNLayer(K,F_in,F_out) layer.K = K; layer.F_in = F_in; layer.F_out = F_out; szW = [F_out,K+1,F_in]; layer.W = randn(szW)*0.01; layer.b = zeros(F_out,1); end function Z = predict(layer,X,A_hat) % X: 输入特征向量 (B,N,T,F_in), B 批次大小, N 节点数量, T 时间长度, F_in 特征维数 % A_hat: 预处理后的拉普拉斯矩阵 B = size(X,1); N = size(A_hat,1); T = size(X,3); H = cell(T,1); for t=1:T Xt = reshape(X(:,:,t,:),[],size(X,4)); % 将三维张量转换成二维矩阵 HT = []; for k=0:min(layer.K,size(A_hat,1)-1) AkX = power(A_hat,k)*Xt; HT = cat(2,HT,AkX); end H{t} = tanh(reshape(linear_combination(HT,layer.W)+repmat(layer.b',size(B*N,1),1),... [B,N,layer.F_out])); end Z = cat(3,H{:}); end function dLdW = backward(layer,dLdZ,X,A_hat) ... end end end ``` #### 4. 训练模型 设置超参数,并利用反向传播算法调整权重以最小化损失函数。 ```matlab num_epochs = 50; batch_size = 64; layers = [ imageInputLayer([input_height input_width channels]) convolution2dLayer(filterSize,numFilters,'Padding','same') batchNormalizationLayer() reluLayer() fullyConnectedLayer(outputSize) regressionLayer()]; options = trainingOptions('adam',... 'MaxEpochs', num_epochs,... 'MiniBatchSize', batch_size,... 'InitialLearnRate', 0.001,... 'Shuffle', 'every-epoch',... 'Verbose', false,... 'Plots', 'training-progress'); model = trainNetwork(trainingData,layers,options); ``` 请注意上述代码片段仅为概念验证性质,在实际应用时还需要考虑更多细节优化及调试工作。
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值