【文章】Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network
【作者】Zhang X, Huang C, Xu Y, et al.
【来源】AAAI 2021
【代码】https://github.com/jillbetty001/ST-GDN
现存问题
- 大多数研究聚焦于临近区域的近邻空间相关性,忽略了全局地理上下文信息
- 大多数研究无法对具有时间依赖性和多分辨率的复杂流量转移规律进行编码
本文概览
提出名为 Spatial-Temporal Graph Diffusion Network, ST-GDN 的交通流量预测框架,该模型具备特点:
- 能学习到局部 region-wise 空间依赖性
- 能从全局角度表征空间语义信息
- 多尺度 attention 网络能捕获 multi-level 时间动态性
本文方法
Problem Definition
- 将城市分成 I ∗ J I * J I∗J 互不相交区域, r i , j r_{i,j} ri,j 表示一个空间区域
- X ∈ R I × J × T \boldsymbol{X} \in \mathbb{R}^{I \times J \times T} X∈RI×J×T 中每个 x i , j t x_{i,j}^t xi,jt 表示区域 r i , j r_{i,j} ri,j 第 t t t time slot(e.g. hour or day) 的流量。 X α \boldsymbol{X}^{\alpha} Xα 表示入流, X β \boldsymbol{X}^{\beta} Xβ 表示出流。
Methodology
Temporal Hierarchy Modeling
该部分和 ST-ResNet 一样,将时间轴分为 hour, day, week 三部分, T p T_p Tp 表示序列数据的分辨率, x i , j T p \mathbf{x}_{i, j}^{T_{p}} xi,jTp 即表示当前分辨率下的流量序列。该部分在建模上使用 自注意力机制 编码,补充(参考 邱锡鹏,神经网络与深度学习,机械工业出版社,https://nndl.github.io/, 2020.):
假设输入序列为 X = [ x 1 , ⋯ , x N ] ∈ R D x × N \boldsymbol{X}=\left[\boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{N}\right] \in \mathbb{R}^{D_{x} \times N} X=[x1,⋯,xN]∈RDx×N,输出序列为 H = [ h 1 , ⋯ , h N ] ∈ R D v × N \boldsymbol{H}=\left[\boldsymbol{h}_{1}, \cdots, \boldsymbol{h}_{N}\right] \in\mathbb{R}^{D_{v} \times N} H=[h1,⋯,hN]∈RDv×N
- 针对每个输入 x i x_i xi,将其线性映射到三个不同空间,映射过程可简写为: Q = W q X ∈ R D k × N K = W k X ∈ R D k × N V = W v X ∈ R D v × N \begin{array}{l} \boldsymbol{Q}=\boldsymbol{W}_{q} \boldsymbol{X} \in \mathbb{R}^{D_{k} \times N} \\ \boldsymbol{K}=\boldsymbol{W}_{k} \boldsymbol{X} \in \mathbb{R}^{D_{k} \times N} \\ \boldsymbol{V}=\boldsymbol{W}_{v} \boldsymbol{X} \in \mathbb{R}^{D_{v} \times N} \end{array} Q=WqX∈RDk×NK=Wk