GNN综述笔记1《Deep Learning on Graphs: A Survey》

1. INTRODUCTION

一方面,深度学习方法在语音、图像和自然语言处理方面都表现出众,深度学习方法在提取数据复杂表征方面很强大。另一方面,图数据在现实生活中无处不在,比如社交网络、电子商务网络、生物网络和交通网络等,图数据有着更复杂的结构 包含更丰富的信息。因此,基于这两方面,如何将深度学习方法和图数据结合就成为很关键的问题了,具体应用上存在以下几方面问题:

  • Irregular structures of graphs 图数据的不规则形。 因为不规则,所以不能简单应用传统的数学算子,例如无法实现卷积和池化操作
  • Heterogeneity and diversity of graphs 图的异质性和多样性。 异质性指图数据的性质(异质/同质、有权/无权、有符号/无符号);多样性指图的任务是多样的,从关注节点的问题(如节点分类和链接预测)到关注图形的问题(如图形分类和图形生成)。基于不同类型、属性和任务需要,就要求有不同的模型架构来处理特定的问题。
  • Large-scale graphs 图数据的大规模性。 现实中数以百万计的节点和边很常见,如何设计一个具有线性时间复杂度的模型是个问题。
  • Incorporating interdisciplinary knowledge 与跨学科知识的结合。 领域知识可以用来解决特定的问题,但是集成领域知识会使模型设计复杂化。

所以,为了解决上述问题,涌现了很多研究成果,本文的工作就是系统地总结这些成果的差异和联系,将现有的方法分为五类:

  • 图循环神经网络(graph recurrent neural networks, Graph RNNs)
  • 图卷积网络(graph convolutional networks, GCNs)
  • 图自编码器(graph autoencoders, GAEs)
  • 图增强学习(graph reinforcement learning, Graph RL)
  • 图对抗模型(graph adversarial methods)

2. NOTATIONS AND PRELIMINARIES

  • 本文讨论的图既可以是有向的,也可以是无向的;既可以有权重,也可以无权重;主要考虑的是无符号图(unsigned graphs)
  • 下文标识中,粗体大写字符表示矩阵,小写表示向量
  • 上标代表处于网络的第几层 H l H^l Hl ,用 f l f_l fl 表示第 l l l 层的维度, H l ∈ R N × f l H^l\in \mathbb{R}^{N\times f_l} HlRN×fl
    在这里插入图片描述
    学习深度图模型的任务大致分为两类:
  • Node-focused tasks 以节点为中心的任务。任务与图中节点相关联,举例包括节点分类(node classification)、链路预测(link prediction)和节点推荐(node recommendation)。
  • Graph-focused tasks 以图形为中心的任务。任务与整个图相关联,举例包括图的分类、估计图的属性和生成图。

注:以上两者的区分大多体现在概念上。而且以节点为中心的任务,有时可以通过转化为以图形为中心的任务研究。不管怎样,下文将在必要时解释这两种类别算法的差异。

3. GRAPH RECURRENT NEURAL NETWORKS

3.1 Node-level RNNs

3.2 Graph-level RNNs

(待更新)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值