信息安全数学基础

整数可除性

判断素数

例题:判断361是不是素数
19≤√361, 小于等于19的素数有𝑝=1, 19 用𝑝去除361, 发现19除361为19,故361不为素数.

最大公因数

性质

① (𝑎, 𝑏)=(𝑏, 𝑎).
② 设𝑎, 𝑏为正整数, 若𝑏│𝑎, 则(𝑎, 𝑏)=𝑏.
③ 设𝑎1,𝑎2,…,𝑎𝑛是𝑛个不全为零的整数, 则
(i)𝑎1,𝑎2,…,𝑎𝑛与|𝑎1|, |𝑎2|, …, |𝑎𝑛|的公因数相同;
(ii)(𝑎1,𝑎2,…,𝑎𝑛)=(|𝑎1|, |𝑎2|, …, |𝑎𝑛|).
④ 设𝑎, 𝑏为正整数, 则
(𝑎, 𝑏)=(𝑎, −𝑏)= (−𝑎, 𝑏)= (−𝑎, −𝑏) .
⑤ 𝑏≠0, 则(0,𝑏)=|𝑏|.
⑥ 设𝑚>0, 𝑚(𝑎1,𝑎2,…,𝑎𝑛)= (𝑚𝑎1, 𝑚𝑎2, …, 𝑚𝑎𝑛).
⑦ 设𝑎1,𝑎2,…,𝑎𝑛为整数, 且𝑎1≠0, 令(𝑎1, 𝑎2)= 𝑑2, (𝑑2, 𝑎3)= 𝑑3, …, (𝑑(𝑛−1),𝑎𝑛)= 𝑑𝑛, 则(𝑎1,𝑎2,…,𝑎𝑛)=𝑑𝑛.
⑧ 设整数𝑎,𝑏,𝑐, 若𝑎|𝑏𝑐且(𝑎, 𝑏)=1, 则𝑎|𝑐.
⑨ 设整数𝑎,𝑏,𝑐, 若𝑐>0, 则(𝑎𝑐,𝑏𝑐)=(𝑎,𝑏)𝑐.
⑩ 设整数𝑎,𝑏, 𝑐, 若(𝑎, 𝑐)=1, (𝑏, 𝑐)=1, 则(𝑎𝑏,𝑐)=1.
⑪ 设整数𝑎,𝑏, 若𝑑>0, 若𝑑|𝑎, 𝑑|𝑏, 则
(𝑎/𝑑,𝑏/𝑑)=((𝑎,𝑏))/𝑑

欧几里得算法

例题:求(168,132)
168 = 132 + 36 (168,132)=(132,36)
132 = 36 X 3 + 24 (132,36) = (36 , 24)
36 = 24 + 12 (36 ,24) = (24 ,12)
24 = 12 X 2 (24 , 12) = (12 ,0) = 12

裴蜀等式

定理

设𝑎,𝑏为任意正整数, 则存在整数𝑠,𝑡, 使得(𝑎,𝑏)=𝑠𝑎+𝑡𝑏.
整数𝑎,𝑏互素当且仅当存在整数𝑠,𝑡, 使得𝑠𝑎+𝑡𝑏=1.

例题

有两个整数𝑎=172和𝑏=46, 求整数𝑠,𝑡, 使得𝑎𝑠+𝑏𝑡=(𝑎,𝑏)时的𝑠和𝑡分别等于多少?
172 = 46 X 3 + 34     2 = 12 - 10
46 = 34 + 12        2 = 12 - (34 - 12 X 2) = 12 X 3 - 34
34 = 12 X 2 + 10      2 = (46 - 34) X 3 - 34 = 46 X 3 - 34 X 4
12 = 10 + 2        2 = 46 X 3 - (172 - 46 X 3)X 4
10 = 2 X 5 + 0        2 = 46 X 15 - 172 X 4
(172,46) = 2    S = 15 T = -4

最小公倍数

设𝑎1,𝑎2,…,𝑎𝑛为整数, 令[𝑎1,𝑎2]=𝑚2, [𝑚2, 𝑎3]=𝑚3, …, [𝑚(𝑛−1), 𝑎𝑛]=𝑚𝑛, 则[𝑎1,𝑎2,…,𝑎𝑛]=𝑚𝑛.
例题:求168和132的最小公倍数
先求 168和132的最大公因数
168 = 132 + 36
132 = 36 X 3 + 24
36 = 24 + 12
24 = 12 X 2
(168 ,132) = 12
[168 , 132] = 168 X 132 / 12 = 168 X 11 = 1848

算术基本定理

标准分解式

49 = 7 X 7 = 72
45 = 3 X 3 X 5 = 32 X 5
100 = 2 X 2 X 5 X 5 = 22 X 52
128 = 2 X 2 X 2 X 2 X 2 X 2 X 2 X 2 = 28

设正整数𝑎,𝑏的素因数分解式为
𝑎=𝑝1(𝛼1) 𝑝2(𝛼2)…𝑝𝑘(𝛼𝑘), 0≤𝛼𝑖, 𝑖=1,2,…,𝑘.
𝑏=𝑝1(𝛽1) 𝑝2(𝛽2)…𝑝𝑘(𝛽𝑘), 0≤𝛽𝑖, 𝑖=1,2,…,𝑘.

令𝑟𝑖=min(𝛼𝑖, 𝛽𝑖), 𝑠𝑖=max(𝛼𝑖, 𝛽𝑖), 则有
(𝑎,𝑏)=𝑝1(𝑟1) 𝑝2(𝑟2)…𝑝𝑘(𝑟𝑘).
[a, b]=𝑝1(𝑠1) 𝑝2(𝑠2)…𝑝𝑘(𝑠𝑘).

同余

设n是正整数,a是整数,如果用n去除a,得商为q,余数为r,则可以表示为:a=qn+r,0≤r<n,用a mod n表示余数r,则r≡a mod n.
如果𝑎=𝑚𝑞1+𝑟1, 𝑏=𝑚𝑞2+𝑟2, 所谓𝑎和𝑏模𝑚同余, 即是说限制0≤𝑟1,𝑟2<𝑚时,𝑟1=𝑟2.
设𝑚为正整数, 𝑎, 𝑏, 𝑐, 𝑑为整数, 如果𝑎≡𝑏(mod⁡𝑚), 𝑐≡𝑑(mod⁡𝑚), 则
(i) 𝑎+𝑐≡𝑏+𝑑(mod⁡𝑚);
(ii) 𝑎𝑐≡𝑏𝑑(mod⁡𝑚).
(1)𝑎+𝑏(mod⁡𝑚)≡(𝑎(mod⁡𝑚 )+𝑏(mod⁡𝑚 ))(mod⁡𝑚).
(2)𝑎𝑏(mod⁡𝑚)≡(𝑎(mod⁡𝑚 )×𝑏(mod⁡𝑚 ))(mod⁡𝑚 ).

剩余类

设𝑚=5, 则𝑟的取值为0, 1, 2, 3, 4.
𝐶0={…, −5, 0, 5, 10,15, …};
𝐶1={…, −4, 1, 6, 11,…};
𝐶2={…, −3, 2, 7, 12,…};
𝐶3={…, −2, 3, 8, 13,…};
𝐶4={…, −1, 4, 9, 14,…}.
集合𝐶𝑎叫做模𝑚的𝑎的剩余类. 模𝑚的剩余类共有𝑚个, 例如𝐶0, 𝐶1, 𝐶2,…, 𝐶(𝑚−1). 一个剩余类中的任一个数叫做该类的剩余.
若𝑟0, 𝑟1,…, 𝑟(𝑚−1)是𝑚个整数, 且其中任何两个都不在同一个剩余类中, 则称𝑟0, 𝑟1,…, 𝑟(𝑚−1)为模𝑚的一个完全剩余系.
模𝑚的完全剩余系中,
(i)最小非负完全剩余系是: 0, 1, …, 𝑚−1.
(ii)最小正完全剩余系是: 1, 2, …, 𝑚.
(iii)绝对值最小完全剩余系是:
𝑚为偶数: −𝑚/2, −(𝑚−2)/2, …, (𝑚−2)/2 或−(𝑚−2)/2, …, (𝑚−2)/2, 𝑚/2;
𝑚为奇数: −(𝑚−1)/2, −(𝑚−3)/2, …, (𝑚−1)/2.

简化剩余类

如果一个模𝑚的剩余类中存在一个与𝑚互素的剩余, 则该剩余类叫做简化剩余类.
设𝑚为正整数, 则1,2,…,𝑚中与𝑚互素的整数的个数, 记作𝝋(𝒎), 叫做欧拉(Euler)函数.因此,模𝒎的简化剩余系的元素的个数为𝝋(𝒎).
模𝑚的简化剩余系:
(i)最小非负简化剩余系:{ 0, 1, …, 𝑚−1}中与𝑚互素的所有整数.
(ii)最小正简化剩余系: {1, 2, …, 𝑚 }中与𝑚互素的所有整数.
(iii)绝对值最小简化剩余系,
当𝑚为偶数时:
{ −𝑚/2, −(𝑚−2)/2, …, (𝑚−2)/2 }或{ −(𝑚−2)/2, …, (𝑚−2)/2, 𝑚/2}
中与𝑚互素的所有整数;
𝑚为奇数时:
{ −(𝑚−1)/2,−(𝑚−3)/2, …, (𝑚−1)/2 }
中与𝑚互素的所有整数.
当m>1时,模𝑚的最小非负简化剩余系与最小正简化剩余系相同.
设𝑚为正整数, a是满足(𝑎, 𝑚)=1的整数. 那么, 若𝑟1, 𝑟2,…, 𝑟(𝜑(𝑚))为模𝑚的一个简化剩余系, 则𝑎𝑟1,𝑎𝑟2,…, 𝑎𝑟(𝜑(𝑚))也模𝑚的一个简化剩余系.
𝑚1, 𝑚2是两个互素的正整数, 若𝑥1, 𝑥2分别遍历模𝑚1, 𝑚2的简化剩余系, 则𝑚2𝑥1+𝑚1 𝑥2遍历模𝑚1 𝑚2的简化剩余系.

欧拉函数

设𝑝为素数, 则𝜑(𝑝)=𝑝-1.
设𝑝为素数, 且整数𝛼≥1, 则𝜑(𝑝𝛼)=𝑝𝛼−𝑝(𝛼−1)=𝑝𝛼 (1−1/𝑝).
设𝑚, 𝑛为正整数, 且(𝑚, 𝑛)=1, 则𝜑(𝑚𝑛)=𝜑(𝑚)𝜑(𝑛).
设整数𝑛=𝑝𝑞, 其中𝑝, 𝑞为不同的素数, 则𝜑(𝑛)=𝜑(𝑝)𝜑(𝑞)=(𝑝-1)(𝑞-1).
设整数𝑛有标准分解式𝑝1(𝛼1) 𝑝2(𝛼2)…𝑝𝑘(𝛼𝑘), 则𝜑(𝑛)=𝑛(1−1/𝑝1 )(1−1/𝑝2 )…(1−1/𝑝𝑘 ).
(Euler定理)设𝑚是大于1的整数, 若整数𝑎满足(𝑎, 𝑚)=1, 则有𝑎^(𝜑(𝑚))≡1(mod⁡𝑚).

费马小定理

设𝑝为素数, 𝑎为任意正整数且𝑝∤𝑎, 则𝑎^(𝑝−1)≡1(mod⁡𝑝).
设𝑚>1是正整数, 则𝑚为素数的必要条件是: 对某个m ∤ a的整数𝑎, 有am-1≡1(mod⁡𝑚).
Miller-Rabin概率检测算法:设𝑛是正奇整数, 如果𝑛是素数, 对于任意整数𝑏(1<𝑏<𝑛−1), 有𝑏(𝑛−1)≡1(mod⁡𝑛).

模重复平方

设𝑛的二进制为𝑛=(𝑛𝑘 𝑛(𝑘−1)…𝑛1 𝑛0)2, 其中𝑛𝑖∈{0, 1}, 𝑖=0,1,…,𝑘. 则

𝑛=(𝑛𝑘 𝑛(𝑘−1)…𝑛1 𝑛0)2
=𝑛𝑘 ×2𝑘+𝑛(𝑘−1) ×2(𝑘−1)+…+𝑛1×21+𝑛0.

𝑏𝑛≡𝑏(𝑛0)×(𝑏2)(𝑛1)×…×(𝑏(2𝑘(2的K次方)))(𝑛𝑘) (mod⁡𝑚).

一次同余方程

记多项式𝑓(𝑥)=𝑎𝑛 𝑥𝑛+𝑎(𝑛−1)𝑥(𝑛−1)+…+𝑎1 𝑥+𝑎0, 𝑛∈𝑁, 𝑖∈[0,𝑛], 𝑎𝑖∈𝑍. 设𝑚∈𝑁,𝑚∤𝑎𝑛, 则同余方程𝑓(𝑥)≡0(mod⁡𝑚)称为模𝑚的同余方程, 𝑛称为𝑓(𝑥)的次数,

若𝑐满足𝑓(𝑥)≡0(mod⁡𝑚), 则满足𝑥≡𝑐(mod⁡𝑚)的所有整数都是方程的解. 即剩余类𝐶𝑐={𝑥|𝑥∈𝑍, 𝑥≡𝑐(mod⁡𝑚)}中的每个剩余都是解, 并说剩余类𝐶𝑐是同余方程𝑓(𝑥)≡0(mod⁡𝑚)的一个解. 这个解通常记为𝑥≡𝑐(mod⁡𝑚).

当𝑐𝑖, 𝑐𝑗均为同余方程𝑓(𝑥)≡0(mod⁡𝑚)的解, 𝑐𝑖≢ 𝑐𝑗 (mod⁡𝑚) , 就称它们是不同的解. 所有对模𝑚的两两不同余的解的个数, 称为是同余方程的解数.

设𝑎∈𝑍, 𝑚∈𝑁, 若(𝑎,𝑚)=1, 则同余方程𝑎𝑥≡1(𝑚𝑜𝑑 𝑚)有唯一解.

故解同余方程𝑎𝑥≡𝑏(mod⁡𝑚)的步骤如下:
(1) 判断方程是否有解. 即判断(𝑎,𝑚)是否整除𝑏.
(2) 计算a/((a,m)) 𝑥≡1(mod m/((a,m)))的解. 运用欧几里德算法求解. 设求得的解为𝑥≡𝑥0 (mod⁡(𝑚/((𝑎,𝑚))).
(3) 写出方程𝑎/((𝑎,𝑚)) 𝑥≡𝑏/((𝑎,𝑚))(mod 𝑚/((𝑎,𝑚)))的解为
𝑥≡𝑏/((𝑎,𝑚)) 𝑥0 (mod⁡(𝑚/((𝑎,𝑚))).
(4) 写出方程𝑎𝑥≡𝑏(mod⁡𝑚)的全部解为
𝑥≡𝑏/((𝑎,𝑚) ) 𝑥0+𝑚/((𝑎,𝑚) ) 𝑡(𝑚𝑜𝑑⁡𝑚), 𝑡=0,1,2,…,(𝑎,𝑚)−1.

二次同余方程

设𝑎∈𝑍, (𝑎,𝑚)=1, 如果同余方程𝑥2≡𝑎(mod 𝑚)有解, 则𝑎叫做模𝑚的平方剩余, 否则叫做模𝑚的平方非剩余.
设𝑝为奇素数, 设𝑎∈𝑍, (𝑎,𝑝)=1, 则
𝑎是模𝑝的平方剩余的充要条件是: 𝑎((𝑝−1)/2)≡1(mod 𝑝);
𝑎是模𝑝的平方非剩余的充要条件是: 𝑎((𝑝−1)/2)≡−1(mod 𝑝).

设𝑝为奇素数,
(1)若𝑎1, 𝑎2均为模𝑝的平方剩余, 则𝑎1 𝑎2仍为模𝑝的平方剩余.
(2)若𝑎1为模𝑝的平方剩余, 𝑎2为模𝑝的平方非剩余, 则𝑎1 𝑎2为模𝑝的平方非剩余.
(3)若𝑎1, 𝑎2均为模𝑝的平方非剩余, 则𝑎1 𝑎2为模𝑝的平方剩余.

设𝑝为奇素数, 𝑎∈𝑍, (𝑎,𝑝)=1, 定义勒让得符号如下:
(𝑎/𝑝)={1, 𝑎是模𝑝的平方剩余
   −1, 𝑎是模𝑝的平方非剩余}

原根和阶

设𝑎,𝑚∈𝑍, 𝑚>1, (𝑎,𝑚)=1, 则使得𝑎𝑒≡1(mod⁡𝑚)成立的最小正整数𝑒叫做𝒂对模𝒎的阶, 记作𝒐𝒓𝒅𝒎 (𝒂)=𝒆.

若𝑎的阶ord𝑚 (𝑎)=𝑒=𝜑(𝑚), 则𝑎叫做模𝑚的原根

设𝑎,𝑚∈𝑍, 𝑚>1, (𝑎,𝑚)=1, 𝑑为正整数, 则𝑎𝑑≡1(mod⁡𝑚)的充分必要条件是𝒐𝒓𝒅𝒎 (𝒂)|𝒅.

设𝑎,𝑚∈𝑍, 𝑚>1, (𝑎,𝑚)=1, 则 𝑎𝑑≡𝑎𝑘 (mod⁡𝑚) ⇔ 𝑑≡𝑘(mod⁡ ord𝑚 (𝑎)).
𝑎𝑛≡𝑎^(𝑛(mod ord𝑚 (𝑎))) (mod m).

设整数𝑚>1, (𝑎,𝑚)=1, 𝑑≥0, 则 ord𝑚 (𝑎𝑑) = (ord𝑚 (𝑎))/((ord~𝑚 (𝑎), 𝑑)).

设𝑚是正整数, 𝑔是模𝑚的一个原根. 对给定的整数𝑎, (a,m)=1, 存在整数𝑟, 使得式𝑔𝑟≡𝑎(𝑚𝑜𝑑 𝑚) 成立, 则称𝑟为以𝒈为底的𝒂对模𝒎的一个指标, 记作𝑟=ind𝑔 𝑎或ind𝑎. 指标也称为对数或离散对数.

近世代数基础

集合𝐺中的二元运算是一个如下的函数:
o:𝐺×𝐺→𝐺
也就是说, 集合𝐺中的二元运算, 就是为有序对(𝑎, 𝑏)分配一个确定的元素𝑐与之对应, 即: 𝑎𝐨𝑏=𝑐. 这里的𝐨可以是数学运算中的加法、减法、乘法、除法或者异或等运算符号, 也可以是重新定义的运算符号.满足结合律交换律.

设𝐺为非空集合, 在𝐺内定义了一种代数运算为ο, 若满足下述公理:
(1)有封闭性. 对任意𝑎, 𝑏∈𝐺, 恒有𝑎ο𝑏∈𝐺.
(2)结合律成立. 对任意𝑎, 𝑏, 𝑐∈𝐺, 有(𝑎ο𝑏)ο𝑐=𝑎ο(𝑏ο𝑐);
(3)𝐺中有一恒等元𝒆存在, 对任意𝑎∈𝐺, 有𝑒∈𝐺, 使𝒂𝝄𝒆=𝒆𝝄𝒂=𝒂;
(4)对任意𝑎∈𝐺, 存在𝑎的唯一逆元a-1 ∈𝐺, 使𝒂𝛐a−1=a−1 𝝄𝒂=𝒆,
则<𝐺,o>构成一个群.
若群𝑮满足交换律, 则称群𝑮为交换群或者阿贝尔群.

设<𝐺, o >是群, 𝑎∈𝐺, 使得等式𝒂𝒌=𝒆成立的最小正整数𝑘称为𝑎的阶, 记作|𝑎|=𝑘, 也称𝒂为𝒌阶元. 若不存在这样的正整数𝑘使得𝑎𝑘=𝑒成立, 则称𝒂为无限阶元. 若集合𝐺的元素个数有限, 则其元素个数称为群𝐺的阶.
设𝐺=<𝑎>是循环群.
(1) 若𝐺=<𝑎>是无限循环群, 则𝐺只有两个生成元, 即𝑎和a-1.
(2) 若𝐺=<𝑎>是𝑛阶循环群, 即𝐺={𝑒, 𝑎, 𝑎2,⋯,𝑎(𝑛−1)}, 𝐺的生成元是𝑎𝑡当且仅当𝑡与𝑛是互质的. 易知𝑛阶循环群的生成元的个数为𝝋(𝒏).这里的n相当于𝜑 (m)。

有限域

非空集合元素𝐹, 若在𝐹中定义了加和乘两种运算, 且满足下述公理:
(1)𝐹关于加法构成交换群. 其加法恒等元记为0.
(2)𝐹中非零元素全体对乘法构成交换群. 其乘法恒等元(单位元)记为1.
(3)加法和乘法间有如下分配律:
𝑎×(𝑏+𝑐)=𝑎×𝑏+𝑎×𝑐
(b+c)×a=b×a+c×a
则称𝐹为一个域.

设𝑝为素数, 对于非空集合𝐹={0, 1, 2, …, 𝑝−1}, 在模𝑝的情况下做加法和乘法运算, 定义运算规则为:
加法⊕: 如果𝑎,𝑏∈𝐹, 则𝑎⊕𝑏=𝑎+𝑏≡𝑟 (mod⁡𝑝 ), 𝑟∈𝐹
乘法⊗: 如果𝑎,𝑏∈𝐹, 则𝑎⊗𝑏=𝑎×𝑏≡𝑠 (mod⁡𝑝 ), 𝑠∈𝐹
设𝐹是一个域, 𝑛是非负整数, 称
𝑓(𝑥)=𝑎0+𝑎1𝑥+𝑎2 𝑥2+…+𝑎𝑛 𝑥𝑛
𝑎𝑖∈𝐹是𝐹上的一元多项式, 其中𝑥是未定元.
如果𝑎𝑛≠0, 则称𝑛是多项式𝑓(𝑥)的次数, 记为𝑑𝑒𝑔𝑓(𝑥) = 𝑛.
如果𝒂𝒏= 𝟏, 则称𝑓(𝑥)为首一多项式.
𝐹上的全体一元多项式的集合用𝑭[𝒙]表示.

设𝐹是域, 多项式𝑓(𝑥)=𝑎0+𝑎1 𝑥+𝑎2 𝑥2+…+𝑎𝑛 𝑥𝑛
𝑔(𝑥)=𝑏0+𝑏1 𝑥+𝑏2 𝑥2+…+𝑏𝑛 𝑥𝑛
其中𝑎𝑖, 𝑏𝑖∈𝐹.
规定加法规则为: 𝑓(𝑥)+𝑔(𝑥)=(𝑎0+𝑏0 )+(𝑎1+𝑏1)𝑥+(𝑎2+𝑏2)𝑥2+…+(𝑎𝑛+𝑏𝑛)𝑥𝑛
规定乘法规则为:
𝑓(𝑥)𝑔(𝑥)=𝑐0+𝑐1 𝑥+𝑐2 𝑥2+…+𝑐2𝑛 𝑥2𝑛, 𝑐𝑖=∑1𝑘=0𝑎𝑘 𝑏𝑖−𝑘
注意, 上面系数的加法和乘法是定义在域𝑭上的.

对于𝑓(𝑥), 𝑔(𝑥)∈𝐹[𝑥], 𝑔(𝑥) ≠ 0.如果存在𝑞(𝑥)∈𝐹[𝑥], 使𝒇(𝒙) = 𝒒(𝒙) 𝒈(𝒙), 则称𝑔(𝑥)整除𝑓(𝑥), 记为𝒈(𝒙)|𝒇(𝒙), 𝑔(𝑥)称为𝑓(𝑥)的因式.

对于𝑓(𝑥),𝑔(𝑥)∈𝐹[𝑥] , 𝑔(𝑥)≠0, 则存在𝑞(𝑥), 𝑟(𝑥)∈𝐹[𝑥], 使𝒇(𝒙) =𝒒(𝒙)𝒈(𝒙)+𝒓(𝒙), 𝑟(𝑥) = 0或deg⁡𝑟(𝑥)<deg⁡𝑟(𝑥).其中𝑞(𝑥)称为商式,𝑟(𝑥)称为余式.

设多项式𝑓(𝑥)是域𝐹𝑝上的首一多项式, 且𝑓(𝑥)为不可约多项式, deg⁡𝑓(𝑥)=𝑛>0, 记𝐹~𝑝 [𝑥]模𝑓(𝑥)的余式的全体为:{𝒂𝟎+𝒂𝟏~ 𝒙+𝒂𝟐 𝒙𝟐+𝒂~(𝒏−𝟏) ~𝒙(𝒏−𝟏) |𝒂𝒊∈𝑭𝒑}, 该集合有𝒑𝒏个元素. 规定加法和乘法运算如下:
加法⊕: 𝑎(𝑥)⊕𝑏(𝑥)=𝑎(𝑥)+𝑏(𝑥).
乘法⊗: 𝑎(𝑥)⊗𝑏(𝑥)=𝑎(𝑥)×𝑏(𝑥)(mod⁡𝑓(𝑥) ).
则𝑭𝒑 [𝒙]模𝒇(𝒙)的余式的全体构成域, 记为GF(𝒑𝒏).

  • 3
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
MOOC(大规模在线开放课程,即Massive Open Online Course)是一种通过互联网上的平台提供的大规模、免费的在线教育。信息安全数学基础是MOOC课程中的一门课程,主要涵盖了信息安全数学基础两个方面的内容。 在这门课程中,学生能够学到信息安全的基本概念、原理和技术。这些内容包括对称密码学、非对称密码学、哈希函数、数字签名、公钥基础设施等。通过学习这些内容,学生可以了解信息的保密性、完整性和可用性的概念,并学会使用相应的技术手段来保护信息安全。 此外,信息安全数学基础课程还包括了一些数学基础知识的学习。这些知识包括数论、离散数学、概率论等。这些数学基础知识在信息安全领域中具有重要的应用价值,例如在公钥密码学中使用的大素数、欧拉定理等。通过学习这些数学基础知识,学生可以更好地理解信息安全技术的原理和算法。 MOOC信息安全数学基础课程不仅提供了相关知识的学习,还通过在线作业和测验来帮助学生巩固所学知识。同时,学生还可以通过在线讨论和互动,与其他学生和教师一起共同学习和解决问题。 总而言之,MOOC信息安全数学基础课程是一门很有价值的课程。通过学习这门课程,学生可以了解到信息安全数学基础之间的密切关系,并且可以掌握一些基本的信息安全技术和数学算法。这将为他们在信息安全领域的学习和职业发展打下良好的基础

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值