同余(数论)&1082同余方程

本文介绍了数论中的同余概念,包括自反性、对称性等性质,以及费马小定理和欧拉定理。还讨论了拓展欧几里得算法在解决线性同余方程中的应用,并提供了1082同余方程的实例解析。
摘要由CSDN通过智能技术生成

同余

如果整数a和整数b除以正整数m的余数相等,叫做a,b模m同余,记作a≡b(mod m)
当然有两种理解的方法
1.两个数除以m的余数相同
2.两个数的差是m的倍数
关于同余有很多的性质:
1.自反性;2.对称性;3.传递性;4.同价性;5.同乘性;6.同幂性;7.同余不满足同除性

费马小定理

如果p是质数,那么对于任意一个整数a ap≡a(mod p)

欧拉定理

如果一个正整数a,n互质,则a欧拉函数(n)≡1(mod n)

拓展欧几里得算法

bezout定理,就是说,对于一个存在两个数a,b存在一对整数x,y,满足ax+by=gcd(a,b)
这就是exgcd,拓展欧几里得算法,是用来求解线性同余方程的

gcd(a,b)=gcd(b,a%b)那么存在一对整数x,y,满足bx+a%by=gcd(b,a%b),然后通过一系列的分解化简,就能求出来ay-b(x-a/b*y)=gcd(a,b)

给定一个方程Ax+By=k
给出A   B   k,求出x和y,使得满足方程

其实就是上面所提到的公式
ay-b(x-a/by) = 然后令x_=y,y_=x-a/by,那么 ax_+by_=gcd(a,b)

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<string>
#include<cstring>
using namespace std;
int exgcd(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值