多目标优化算法的测试函数与解

326 篇文章 2 订阅
85 篇文章 2 订阅
From Wikipedia, the free encyclopedia

In applied mathematics, test functions, known as artificial landscapes, are useful to evaluate characteristics of optimization algorithms, such as:

  • Velocity of convergence.
  • Precision.
  • Robustness.
  • General performance.

Here some test functions are presented with the aim of giving an idea about the different situations that optimization algorithms have to face when coping with these kinds of problems. In the first part, some objective functions for single-objective optimization cases are presented. In the second part, test functions with their respective Pareto fronts for multi-objective optimization problems (MOP) are given.

The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck,[1] Haupt et. al.[2] and from Rody Oldenhuis software.[3] Given the amount of problems (55 in total), just a few are presented here. The complete list of test functions is found on the Mathworks website.[4]

The test functions used to evaluate the algorithms for MOP were taken from Deb,[5] Binh et. al.[6] and Binh.[7] You can download the software developed by Deb,[8]which implements the NSGA-II procedure with GAs, or the program posted on Internet,[9] which implements the NSGA-II procedure with ES.

Just a general form of the equation, a plot of the objective function, boundaries of the object variables and the coordinates of global minima are given herein.

Test functions for single-objective optimization problems[edit]

Name Plot Formula Minimum Search domain
Ackley's function:Ackley's function for n=2f(x,y) = -20\exp\left(-0.2\sqrt{0.5\left(x^{2}+y^{2}\right)}\right)

-\exp\left(0.5\left(\cos\left(2\pi x\right)+\cos\left(2\pi y\right)\right)\right) + 20 + e

f(0,0) = 0-5\le x,y \le 5
Sphere functionSphere function for n=2f(\boldsymbol{x}) = \sum_{i=1}^{n} x_{i}^{2}f(x_{1}, \dots, x_{n}) = f(0, \dots, 0) = 0-\infty \le x_{i} \le \infty1 \le i \le n
Rosenbrock functionRosenbrock's function for n=2f(\boldsymbol{x}) = \sum_{i=1}^{n-1} \left[ 100 \left(x_{i+1} - x_{i}^{2}\right)^{2} + \left(x_{i} - 1\right)^{2}\right]\text{Min} =\begin{cases}n=2 & \rightarrow \quad f(1,1) = 0, \\n=3 & \rightarrow \quad f(1,1,1) = 0, \\n>3 & \rightarrow \quad f\left(\underbrace{1,\dots,1}_{(n) \text{ times}}\right) = 0 \\\end{cases}-\infty \le x_{i} \le \infty1 \le i \le n
Beale's functionBeale's functionf(x,y) = \left( 1.5 - x + xy \right)^{2} + \left( 2.25 - x + xy^{2}\right)^{2}

+ \left(2.625 - x+ xy^{3}\right)^{2}

f(3, 0.5) = 0-4.5 \le x,y \le 4.5
Goldstein–Price function:Goldstein–Price functionf(x,y) = \left(1+\left(x+y+1\right)^{2}\left(19-14x+3x^{2}-14y+6xy+3y^{2}\right)\right)

\left(30+\left(2x-3y\right)^{2}\left(18-32x+12x^{2}+48y-36xy+27y^{2}\right)\right)

f(0, -1) = 3-2 \le x,y \le 2
Booth's function:Booth's functionf(x,y) = \left( x + 2y -7\right)^{2} + \left(2x +y - 5\right)^{2}f(1,3) = 0-10 \le x,y \le 10
Bukin function N.6:Bukin function N.6f(x,y) = 100\sqrt{\left|y - 0.01x^{2}\right|} + 0.01 \left|x+10 \right|.\quadf(-10,1) = 0-15\le x \le -5-3\le y \le 3
Matyas function:Matyas functionf(x,y) = 0.26 \left( x^{2} + y^{2}\right) - 0.48 xyf(0,0) = 0-10\le x,y \le 10
Lévi function N.13:Lévi function N.13f(x,y) = \sin^{2}\left(3\pi x\right)+\left(x-1\right)^{2}\left(1+\sin^{2}\left(3\pi y\right)\right)

+\left(y-1\right)^{2}\left(1+\sin^{2}\left(2\pi y\right)\right)

f(1,1) = 0-10\le x,y \le 10
Three-hump camel function:Three Hump Camel functionf(x,y) = 2x^{2} - 1.05x^{4} + \frac{x^{6}}{6} + xy + y^{2}f(0,0) = 0-5\le x,y \le 5
Easom function:Easom functionf(x,y) = -\cos \left(x\right)\cos \left(y\right) \exp\left(-\left(\left(x-\pi\right)^{2} + \left(y-\pi\right)^{2}\right)\right)f(\pi , \pi) = -1-100\le x,y \le 100
Cross-in-tray function:Cross-in-tray functionf(x,y) = -0.0001 \left( \left| \sin \left(x\right) \sin \left(y\right) \exp \left( \left|100 - \frac{\sqrt{x^{2} + y^{2}}}{\pi} \right|\right)\right| + 1 \right)^{0.1}\text{Min} =\begin{cases}      f\left(1.34941, -1.34941\right) & = -2.06261 \\      f\left(1.34941,  1.34941\right) & = -2.06261 \\      f\left(-1.34941, 1.34941\right) & = -2.06261 \\      f\left(-1.34941,-1.34941\right) & = -2.06261 \\\end{cases}-10\le x,y \le 10
Eggholder function:Eggholder functionf(x,y) = - \left(y+47\right) \sin \left(\sqrt{\left|y + \frac{x}{2}+47\right|}\right) - x \sin \left(\sqrt{\left|x - \left(y + 47 \right)\right|}\right)f(512, 404.2319) = -959.6407-512\le x,y \le 512
Hölder table function:Holder table functionf(x,y) = - \left|\sin \left(x\right) \cos \left(y\right) \exp \left(\left|1 - \frac{\sqrt{x^{2} + y^{2}}}{\pi} \right|\right)\right|\text{Min} =\begin{cases}      f\left(8.05502,  9.66459\right) & = -19.2085 \\      f\left(-8.05502,  9.66459\right) & = -19.2085 \\      f\left(8.05502,-9.66459\right) & = -19.2085 \\      f\left(-8.05502,-9.66459\right) & = -19.2085\end{cases}-10\le x,y \le 10
McCormick function:McCormick functionf(x,y) = \sin \left(x+y\right) + \left(x-y\right)^{2} - 1.5x + 2.5y + 1f(-0.54719,-1.54719) = -1.9133-1.5\le x \le 4-3\le y \le 4
Schaffer function N. 2:Schaffer function N.2f(x,y) = 0.5 + \frac{\sin^{2}\left(x^{2} - y^{2}\right) - 0.5}{\left(1 + 0.001\left(x^{2} + y^{2}\right) \right)^{2}}f(0, 0) = 0-100\le x,y \le 100
Schaffer function N. 4:Schaffer function N.4f(x,y) = 0.5 + \frac{\cos\left(\sin \left( \left|x^{2} - y^{2}\right|\right)\right) - 0.5}{\left(1 + 0.001\left(x^{2} + y^{2}\right) \right)^{2}}f(0,1.25313) = 0.292579-100\le x,y \le 100
Styblinski–Tang function:Styblinski-Tang functionf(\boldsymbol{x}) = \frac{\sum_{i=1}^{n} x_{i}^{4} - 16x_{i}^{2} + 5x_{i}}{2}f\left(\underbrace{-2.903534, \ldots, -2.903534}_{(n) \text{ times}} \right) = -39.16599n-5\le x_{i} \le 51\le i \le n.
Simionescu function:[10]Simionescu functionf(x,y) = 0.1xy,

\text{subjected to: }  x^2+y^2\le\left(r_{T}+r_{S}\cos\left(n \arctan \frac{x}{y} \right)\right)^2 \text{where: }  r_{T}=1, r_{S}=0.2 \text{ and } n = 8

f(\pm 0.84852813,\mp 0.84852813) = -0.78-1.25\le x,y \le 1.25

Test functions for multi-objective optimization problems[edit]

Name Plot Functions Constraints Search domain
Binh and Korn function:Binh and Korn function\text{Minimize} =\begin{cases}      f_{1}\left(x,y\right) & = 4x^{2} + 4y^{2} \\      f_{2}\left(x,y\right) & = \left(x - 5\right)^{2} + \left(y - 5\right)^{2} \\\end{cases}\text{s.t.} =\begin{cases}      g_{1}\left(x,y\right) & = \left(x - 5\right)^{2} + y^{2} \leq 25 \\      g_{2}\left(x,y\right) & = \left(x - 8\right)^{2} + \left(y + 3\right)^{2} \geq 7.7 \\\end{cases}0\le x \le 50\le y \le 3
Chakong and Haimes function:Chakong and Haimes function\text{Minimize} =\begin{cases}      f_{1}\left(x,y\right) & = 2 + \left(x-2\right)^{2} + \left(y-1\right)^{2} \\      f_{2}\left(x,y\right) & = 9x + \left(y - 1\right)^{2} \\\end{cases}\text{s.t.} =\begin{cases}      g_{1}\left(x,y\right) & = x^{2} + y^{2} \leq 225 \\      g_{2}\left(x,y\right) & = x - 3y + 10 \leq 0 \\\end{cases}-20\le x,y \le 20
Fonseca and Fleming function:Fonseca and Fleming function\text{Minimize} =\begin{cases}      f_{1}\left(\boldsymbol{x}\right) & = 1 - \exp \left(-\sum_{i=1}^{n} \left(x_{i} - \frac{1}{\sqrt{n}} \right)^{2} \right) \\      f_{2}\left(\boldsymbol{x}\right) & = 1 - \exp \left(-\sum_{i=1}^{n} \left(x_{i} + \frac{1}{\sqrt{n}} \right)^{2} \right) \\\end{cases} -4\le x_{i} \le 41\le i \le n
Test function 4:[7]Test function 4.[7]\text{Minimize} =\begin{cases}      f_{1}\left(x,y\right) & = x^{2} - y \\      f_{2}\left(x,y\right) & = -0.5x - y - 1 \\\end{cases}\text{s.t.} =\begin{cases}      g_{1}\left(x,y\right) & = 6.5 - \frac{x}{6} - y \geq 0 \\      g_{2}\left(x,y\right) & = 7.5  - 0.5x - y \geq 0 \\      g_{3}\left(x,y\right) & = 30  - 5x - y \geq 0 \\\end{cases}-7\le x,y \le 4
Kursawe function:Kursawe function\text{Minimize} =\begin{cases}      f_{1}\left(\boldsymbol{x}\right) & = \sum_{i=1}^{2} \left[-10 \exp \left(-0.2 \sqrt{x_{i}^{2} + x_{i+1}^{2}} \right) \right] \\      & \\      f_{2}\left(\boldsymbol{x}\right) & = \sum_{i=1}^{3} \left[\left|x_{i}\right|^{0.8}  + 5 \sin \left(x_{i}^{3} \right) \right] \\\end{cases} -5\le x_{i} \le 51\le i \le 3.
Schaffer function N. 1:Schaffer function N.1\text{Minimize} =\begin{cases}      f_{1}\left(x\right) & = x^{2} \\      f_{2}\left(x\right) & = \left(x-2\right)^{2} \\\end{cases} -A\le x \le A. Values of A form 10to 10^{5} have been used successfully. Higher values of A increase the difficulty of the problem.
Schaffer function N. 2:Schaffer function N.2\text{Minimize} =\begin{cases}      f_{1}\left(x\right) & = \begin{cases}                                -x,   & \text{if } x \le 1 \\                                 x-2, & \text{if } 1 < x \le 3 \\                                 4-x, & \text{if } 3 < x \le 4 \\                                 x-4, & \text{if } x > 4 \\                              \end{cases} \\      f_{2}\left(x\right) & = \left(x-5\right)^{2} \\\end{cases} -5\le x \le 10.
Poloni's two objective function:Poloni's two objective function\text{Minimize} =\begin{cases}      f_{1}\left(x,y\right) & = \left[1 + \left(A_{1} - B_{1}\left(x,y\right) \right)^{2} + \left(A_{2} - B_{2}\left(x,y\right) \right)^{2} \right] \\      f_{2}\left(x,y\right) & = \left(x + 3\right)^{2} + \left(y + 1 \right)^{2} \\\end{cases}

\text{where} =\begin{cases}      A_{1} & = 0.5 \sin \left(1\right) - 2 \cos \left(1\right) + \sin \left(2\right) - 1.5 \cos \left(2\right)  \\      A_{2} & = 1.5 \sin \left(1\right) - \cos \left(1\right) + 2 \sin \left(2\right) - 0.5 \cos \left(2\right)  \\      B_{1}\left(x,y\right) & = 0.5 \sin \left(x\right) - 2 \cos \left(x\right) + \sin \left(y\right) - 1.5 \cos \left(y\right)  \\      B_{2}\left(x,y\right) & = 1.5 \sin \left(x\right) - \cos \left(x\right) + 2 \sin \left(y\right) - 0.5 \cos \left(y\right)\end{cases}

 -\pi\le x,y \le \pi
Zitzler–Deb–Thiele's function N. 1:Zitzler-Deb-Thiele's function N.1\text{Minimize} =\begin{cases}      f_{1}\left(\boldsymbol{x}\right) & = x_{1} \\      f_{2}\left(\boldsymbol{x}\right) & = g\left(\boldsymbol{x}\right) h \left(f_{1}\left(\boldsymbol{x}\right),g\left(\boldsymbol{x}\right)\right) \\      g\left(\boldsymbol{x}\right) & = 1 + \frac{9}{29} \sum_{i=2}^{30} x_{i} \\      h \left(f_{1}\left(\boldsymbol{x}\right),g\left(\boldsymbol{x}\right)\right) & = 1 - \sqrt{\frac{f_{1}\left(\boldsymbol{x}\right)}{g\left(\boldsymbol{x}\right)}} \\\end{cases} 0\le x_{i} \le 11\le i \le 30.
Zitzler–Deb–Thiele's function N. 2:Zitzler-Deb-Thiele's function N.2\text{Minimize} =\begin{cases}      f_{1}\left(\boldsymbol{x}\right) & = x_{1} \\      f_{2}\left(\boldsymbol{x}\right) & = g\left(\boldsymbol{x}\right) h \left(f_{1}\left(\boldsymbol{x}\right),g\left(\boldsymbol{x}\right)\right) \\      g\left(\boldsymbol{x}\right) & = 1 + \frac{9}{29} \sum_{i=2}^{30} x_{i} \\      h \left(f_{1}\left(\boldsymbol{x}\right),g\left(\boldsymbol{x}\right)\right) & = 1 - \left(\frac{f_{1}\left(\boldsymbol{x}\right)}{g\left(\boldsymbol{x}\right)}\right)^{2} \\\end{cases} 0\le x_{i} \le 11\le i \le 30.
Zitzler–Deb–Thiele's function N. 3:Zitzler-Deb-Thiele's function N.3\text{Minimize} =\begin{cases}      f_{1}\left(\boldsymbol{x}\right) & = x_{1} \\      f_{2}\left(\boldsymbol{x}\right) & = g\left(\boldsymbol{x}\right) h \left(f_{1}\left(\boldsymbol{x}\right),g\left(\boldsymbol{x}\right)\right) \\      g\left(\boldsymbol{x}\right) & = 1 + \frac{9}{29} \sum_{i=2}^{30} x_{i} \\      h \left(f_{1}\left(\boldsymbol{x}\right),g\left(\boldsymbol{x}\right)\right) & = 1 - \sqrt{\frac{f_{1}\left(\boldsymbol{x}\right)}{g\left(\boldsymbol{x} \right)}} - \left(\frac{f_{1}\left(\boldsymbol{x}\right)}{g\left(\boldsymbol{x}\right)} \right) \sin \left(10 \pi f_{1} \left(\boldsymbol{x} \right) \right)\end{cases} 0\le x_{i} \le 11\le i \le 30.
Zitzler–Deb–Thiele's function N. 4:caption2  = Zitzler-Deb-Thiele's function N.4\text{Minimize} =\begin{cases}      f_{1}\left(\boldsymbol{x}\right) & = x_{1} \\      f_{2}\left(\boldsymbol{x}\right) & = g\left(\boldsymbol{x}\right) h \left(f_{1}\left(\boldsymbol{x}\right),g\left(\boldsymbol{x}\right)\right) \\      g\left(\boldsymbol{x}\right) & = 91 + \sum_{i=2}^{10} \left(x_{i}^{2} - 10 \cos \left(4 \pi x_{i}\right) \right) \\      h \left(f_{1}\left(\boldsymbol{x}\right),g\left(\boldsymbol{x}\right)\right) & = 1 - \sqrt{\frac{f_{1}\left(\boldsymbol{x}\right)}{g\left(\boldsymbol{x} \right)}}\end{cases} 0\le x_{1} \le 1-5\le x_{i} \le 52\le i \le 10
Zitzler–Deb–Thiele's function N. 6:Zitzler-Deb-Thiele's function N.6\text{Minimize} =\begin{cases}      f_{1}\left(\boldsymbol{x}\right) & = 1 - \exp \left(-4x_{1}\right)\sin^{6}\left(6 \pi x_{1} \right) \\      f_{2}\left(\boldsymbol{x}\right) & = g\left(\boldsymbol{x}\right) h \left(f_{1}\left(\boldsymbol{x}\right),g\left(\boldsymbol{x}\right)\right) \\      g\left(\boldsymbol{x}\right) & = 1 + 9 \left[\frac{\sum_{i=2}^{10} x_{i}}{9}\right]^{0.25} \\      h \left(f_{1}\left(\boldsymbol{x}\right),g\left(\boldsymbol{x}\right)\right) & = 1 - \left(\frac{f_{1}\left(\boldsymbol{x}\right)}{g\left(\boldsymbol{x} \right)}\right)^{2} \\\end{cases} 0\le x_{i} \le 11\le i \le 10.
Viennet function:Viennet function\text{Minimize} =\begin{cases}      f_{1}\left(x,y\right) & = 0.5\left(x^{2} + y^{2}\right) + \sin\left(x^{2} + y^{2} \right) \\      f_{2}\left(x,y\right) & = \frac{\left(3x - 2y + 4\right)^{2}}{8} +  \frac{\left(x - y + 1\right)^{2}}{27} + 15 \\      f_{3}\left(x,y\right) & = \frac{1}{x^{2} + y^{2} + 1} - 1.1 \exp \left(- \left(x^{2} + y^{2} \right) \right) \\\end{cases} -3\le x,y \le 3.
Osyczka and Kundu function:Osyczka and Kundu function\text{Minimize} =\begin{cases}      f_{1}\left(\boldsymbol{x}\right) & = -25 \left(x_{1}-2\right)^{2} - \left(x_{2}-2\right)^{2} - \left(x_{3}-1\right)^{2}- \left(x_{4}-4\right)^{2} - \left(x_{5}-1\right)^{2} \\      f_{2}\left(\boldsymbol{x}\right) & = \sum_{i=1}^{6} x_{i}^{2} \\\end{cases}\text{s.t.} =\begin{cases}      g_{1}\left(\boldsymbol{x}\right) & = x_{1} + x_{2} - 2 \geq 0 \\      g_{2}\left(\boldsymbol{x}\right) & = 6 - x_{1} - x_{2} \geq 0 \\      g_{3}\left(\boldsymbol{x}\right) & = 2 - x_{2} + x_{1} \geq 0 \\      g_{4}\left(\boldsymbol{x}\right) & = 2 - x_{1} + 3x_{2} \geq 0 \\      g_{5}\left(\boldsymbol{x}\right) & = 4 - \left(x_{3}-3\right)^{2} - x_{4} \geq 0 \\      g_{6}\left(\boldsymbol{x}\right) & = \left(x_{5} - 3\right)^{2} + x_{6} - 4 \geq 0\end{cases}0\le x_{1},x_{2},x_{6} \le 101\le x_{3},x_{5} \le 50\le x_{4} \le 6.
CTP1 function (2 variables):[5]CTP1 function (2 variables).[5]\text{Minimize} =\begin{cases}      f_{1}\left(x,y\right) & = x \\      f_{2}\left(x,y\right) & = \left(1 + y\right) \exp \left(-\frac{x}{1+y} \right)\end{cases}\text{s.t.} =\begin{cases}      g_{1}\left(x,y\right) & = \frac{f_{2}\left(x,y\right)}{0.858 \exp \left(-0.541 f_{1}\left(x,y\right)\right)} \geq 1 \\      g_{1}\left(x,y\right) & = \frac{f_{2}\left(x,y\right)}{0.728 \exp \left(-0.295 f_{1}\left(x,y\right)\right)} \geq 1\end{cases}0\le x,y \le 1.
Constr-Ex problem:[5]Constr-Ex problem.[5]\text{Minimize} =\begin{cases}      f_{1}\left(x,y\right) & = x \\      f_{2}\left(x,y\right) & = \frac{1 + y}{x} \\\end{cases}\text{s.t.} =\begin{cases}      g_{1}\left(x,y\right) & = y + 9x \geq 6 \\      g_{1}\left(x,y\right) & = -y + 9x \geq 1 \\\end{cases}0.1\le x \le 10\le y \le 5

See also[edit]

References[edit]

  1. Jump up^ Bäck, Thomas (1995). Evolutionary algorithms in theory and practice : evolution strategies, evolutionary programming, genetic algorithms. Oxford: Oxford University Press. p. 328. ISBN 0-19-509971-0.
  2. Jump up^ Haupt, Randy L. Haupt, Sue Ellen (2004). Practical genetic algorithms with DC-Rom (2nd ed. ed.). New York: J. Wiley. ISBN 0-471-45565-2.
  3. Jump up^ Oldenhuis, Rody. "Many test functions for global optimizers". Mathworks. Retrieved 1 November 2012.
  4. Jump up^ Ortiz, Gilberto A. "Evolution Strategies (ES)". Mathworks. Retrieved 1 November 2012.
  5. Jump up to:a b c d e Deb, Kalyanmoy (2002) Multiobjective optimization using evolutionary algorithms (Repr. ed.). Chichester [u.a.]: Wiley. ISBN 0-471-87339-X.
  6. Jump up^ Binh T. and Korn U. (1997) MOBES: A Multiobjective Evolution Strategy for Constrained Optimization Problems. In: Proceedings of the Third International Conference on Genetic Algorithms. Czech Republic. pp. 176-182
  7. Jump up to:a b c Binh T. (1999) A multiobjective evolutionary algorithm. The study cases. Technical report. Institute for Automation and Communication. Barleben, Germany
  8. Jump up^ Deb K. (2011) Software for multi-objective NSGA-II code in C. Available at URL:http://www.iitk.ac.in/kangal/codes.shtml. Revision 1.1.6
  9. Jump up^ Ortiz, Gilberto A. "Multi-objective optimization using ES as Evolutionary Algorithm.". Mathworks. Retrieved 1 November 2012.
  10. Jump up^ Simionescu, P.A. (2014). Computer Aided Graphing and Simulation Tools for AutoCAD users (1st ed.). Boca Raton, FL: CRC Press. ISBN 9-781-48225290-3.

来源:http://en.wikipedia.org/wiki/Test_functions_for_optimization
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值