一、复数的起源
大家都知道,一元二次方程 a x 2 + b x + c ( a ≠ 0 ) ax^2+bx+c\ (a\ne0) ax2+bx+c (a=0) 当 Δ < 0 \Delta <0 Δ<0 时没有实数根,例如 x 2 + 1 = 0 x^2 + 1=0 x2+1=0 这个方程就没有实数解,因为任何实数的平方肯定是非负的。但随着数学的发展,数学家们规定了 i 2 = − 1 \mathrm{i}^2=-1 i2=−1,这就是复数的起源。
二、复数的运算
数系的扩充,必须要满足数系扩充原则。基本原则如下:
①在原数集中某种运算不封闭,在扩充后的新数集中该运算封闭;
②进行的每一次扩充都是从一个较小的原数集扩充到一个较大的新数集,且使得原数集是新数集的一部分;
③保持原有的运算,也就是说必须满足原有数集的运算律;
④要使扩充后的新数集是原数集满足以上的①、②、③原则的最小扩充,并且该扩充是唯一的。
所以,我们希望新定义出的 i \rm i i 能像实数一样进行加减乘除等各种运算。如果一个数是实数与 i \rm i i 的实数倍的和,我们把它记作 a + b i a+b\rm i a+bi,其中 a , b ∈ R a,b\in \R a,b∈R, a a a 是实部, b b b 是虚部,我们自然也希望它满足原有的运算律。
1. 复数的加减法
复数的加法运算规则是这样的: ( a + b i ) + ( c + d i ) = ( a + c ) + ( b + d ) i (a+b\mathrm{i})+(c+d\mathrm{i})=(a+c)+(b+d)\rm i (a+bi)+(c+di)=(a+c)+(b+d)i这个定义很自然,实部和实部相加,虚部和虚部相加。这就像逆用乘法分配律提取出 i \rm i i 一样,再进行相加。
相减也是这样: ( a + b i ) − ( c + d i ) = ( a − c ) + ( b − d ) i (a+b\mathrm{i})-(c+d\mathrm{i})=(a-c)+(b-d)\mathrm{i} (a+bi)−(c+di)=(a−c)+(b−d)i
2. 复数的乘法
那再看看复数的乘法是怎么计算的:
(
a
+
b
i
)
(
c
+
d
i
)
=
(
a
c
−
b
d
)
+
(
a
d
+
b
c
)
i
(a+b\mathrm{i})(c+d\mathrm{i})=(ac-bd)+(ad+bc)\mathrm{i}
(a+bi)(c+di)=(ac−bd)+(ad+bc)i
首先,像多项式乘法一样,把
(
a
+
b
i
)
(a+b\mathrm{i})
(a+bi) 和
(
c
+
d
i
)
(c+d\mathrm{i})
(c+di) 看做两个多项式,进行相乘。
(
a
+
b
i
)
(
c
+
d
i
)
=
a
c
+
a
d
i
+
b
c
i
+
b
d
i
2
(a+b\mathrm{i})(c+d\mathrm{i})=ac+ad\mathrm{i}+bc\mathrm{i}+bd\mathrm{i}^2
(a+bi)(c+di)=ac+adi+bci+bdi2
接着,我们用
−
1
-1
−1 替换
i
2
\mathrm{i}^2
i2,再合并同类项,就得到
a
c
+
a
d
i
+
b
c
i
+
b
d
i
2
=
(
a
c
−
b
d
)
+
(
a
d
+
b
c
)
i
ac+ad\mathrm{i}+bc\mathrm{i}+bd\mathrm{i}^2=(ac-bd)+(ad+bc)\rm i
ac+adi+bci+bdi2=(ac−bd)+(ad+bc)i。
特别地, ( a + b i ) ( a − b i ) = a 2 + b 2 (a+b\mathrm{i})(a-b\mathrm{i})=a^2+b^2 (a+bi)(a−bi)=a2+b2。
3. 复数的除法
复数的除法则是这样: a + b i c + d i = a c + b d c 2 + d 2 + b c − a d c 2 + d 2 i \dfrac{a+b\rm i}{c+d\rm i}=\dfrac{ac+bd}{c^2+d^2}+\dfrac{bc-ad}{c^2+d^2}\rm i c+dia+bi=c2+d2ac+bd+c2+d2bc−adi相比于加减乘,复数的乘法就略微有些复杂。 a + b i c + d i \dfrac{a+b\rm i}{c+d\rm i} c+dia+bi 并不能直接当做结果,我们还是需要将这个除式写成 a + b i a+b\rm i a+bi 的形式,这样才便于计算。要想得到这样的结果,我们必须要把分母“实数化”,类比去掉根号时的“分母有理化”,我们可以运用平方差公式来去掉 i \rm i i。
a + b i c + d i = ( a + b i ) ( c − d i ) ( c + d i ) ( c − d i ) = ( a c + b d ) + ( b c − a d ) i c 2 + d 2 = a c + b d c 2 + d 2 + b c − a d c 2 + d 2 i . \dfrac{a+b\rm i}{c+d\rm i}=\dfrac{(a+b\mathrm{i})(c-d\mathrm{i})}{(c+d\mathrm{i})(c-d\mathrm{i})}=\dfrac{(ac+bd)+(bc-ad)\rm i}{c^2+d^2}=\dfrac{ac+bd}{c^2+d^2}+\dfrac{bc-ad}{c^2+d^2}\rm i. c+dia+bi=(c+di)(c−di)(a+bi)(c−di)=c2+d2(ac+bd)+(bc−ad)i=c2+d2ac+bd+c2+d2bc−adi.
对结论还不太放心的同学,还可以运用乘法进行验证。
为什么复数的乘除法不是实部和实部相乘除,虚部和虚部相乘除?因为这样的定义使得复数不能够满足实数的运算律,这样也就违背了数系扩充的规则。
定义了上述复数的运算后,可以发现复数上的运算与实数的运算是协调一致的,复数集的出现也就使得数系进行了一次新的扩充。也可以说,复数集成为了一个域。有了复数域,一般的二次方程就都有解了。
域: 设P是由一些复数组成的集合,其中包括0与1,如果P中任意两个数的和、差、积、商(除数不为0)仍是P中的数,则称P为一个数域。
后话
相信不少同学对复数还是存在疑惑,并且,复数的乘除法实在是太麻烦了。新定义出的复数还有没有更简便的运算方法呢?下篇文章为你揭晓复数的几何形式。
参考:数系扩充原则(数学术语) - 百度百科