cocos2d-x win32开发环境搭建

本文介绍了如何在Visual Studio 2013环境中,通过安装Python 2.7.6和Cocos2d-x3.2进行游戏开发的基本步骤。从配置环境变量到创建项目,详细指导了整个开发流程,包括安装、配置和项目创建等关键步骤。

开发工具:

      @Visual Studio2013

      @python2.7.6

      @Cocos2d-x3.2

安装配置过程:

    1.下载并安装python2.7.6.双击,一路next默认安装.

    2.配置环境变量

     3. 检验安装是否成功,win+E,输入cmd,输入python,出现下图提示,说明安装成功.

     4.下载cocos2d-x-3.2文件并解压,进入cocos2dx3.2安装目录,按住shift点击右键,在此处打开命令提示符,在命令提示符中输入setup.py.

打开 “build”目录,直接双击运行 cocos2d-win32.vc2012.sln解决方案,找到cpp-tests,右键设为启动项目,开启本地调试.

经过漫长的等待,如果没有错误的话,运行结果应该是这样的,如下图

      5创建项目使用命令:cocos.py newHelloCpp -p com.coco2dx.org -l cpp -d ~/Desktop

    HelloCpp为项目名称

   -p后面接包名

   -l后面接开发语言类型,有cpp, lua, js三种类型

   -d后面接项目存放的目录

然后运行HelloCpp.sln,出现下面结果,运行成功!!




内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合Koopman算子理论与递归神经网络(RNN)的数据驱动建模方法,旨在对非线性纳米定位系统进行有效线性化建模,并实现高精度的模型预测控制(MPC)。该方法利用Koopman算子将非线性系统映射到高维线性空间,通过递归神经网络学习系统的动态演化规律,构建可解释性强、计算效率高的线性化模型,进而提升预测控制在复杂不确定性环境下的鲁棒性与跟踪精度。文中给出了完整的Matlab代码实现,涵盖数据预处理、网络训练、模型验证与MPC控制器设计等环节,具有较强的基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)可复现性和工程应用价值。; 适合人群:具备一定控制理论基础和Matlab编程能力的研究生、科研人员及自动化、精密仪器、机器人等方向的工程技术人员。; 使用场景及目标:①解决高精度纳米定位系统中非线性动态响应带来的控制难题;②实现复杂机电系统的数据驱动建模与预测控制一体化设计;③为非线性系统控制提供一种可替代传统机理建模的有效工具。; 阅读建议:建议结合提供的Matlab代码逐模块分析实现流程,重点关注Koopman观测矩阵构造、RNN网络结构设计与MPC控制器耦合机制,同时可通过替换实际系统数据进行迁移验证,深化对数据驱动控制方法的理解与应用能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值