决策树 算法 理论

决策树分类
这里写图片描述
决策树模型呈树形结构,在分类中,表示基于特征对实例进行分类的过程。可以认为是if-then规则的集合。

决策树组成部分
决策树是一种描述对样本实例(天气情况)进行分类(进行户外活动,取消户外活动)的树形结构。
决策树由结点(node)和有向边(directed edge)组成。结点分为内部结点和叶结点。内部结点表示一个特征属性(空气质量/天气/温度/风力),有向边表示对应的特征属性下的分支;叶结点表示决策结果(进行活动/取消活动)。
最上面的结点是根结点,此时所有样本都在一起,经过该结点后样本被划分到各子结点中。每个子结点再用新的特征来进一步决策,直到最后的叶结点,就不需要再进行划分。
这里写图片描述

特征选择
这里写图片描述

决策树—ID3算法
这里写图片描述

熵(entropy)
这里写图片描述

条件熵
这里写图片描述

决策树应用类型
这里写图片描述

信息增益
这里写图片描述
这里写图片描述

ID3思想
这里写图片描述

ID3算法实例
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

ID3算法分析
这里写图片描述

C4.5算法的改进
这里写图片描述

信息增益比
这里写图片描述

CART算法
这里写图片描述
这里写图片描述

基尼指数
这里写图片描述

CART生成树
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

CART剪枝
这里写图片描述

剪枝—代价复杂度CCP
这里写图片描述
这里写图片描述
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值