《Machine Learning(Tom M. Mitchell)》读书笔记——1、全书结构

本文概述了机器学习领域的核心概念与技术,包括概念学习、决策树学习、人工神经网络、贝叶斯学习等十三章节,深入探讨了从基础到进阶的知识体系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Product Details

Editorial Reviews

Preface

Acknowledgements

Contents(thirteen chapters)

1. Introduction (about machine learning)

2. Concept Learning and the General-to-Specific Ordering

3. Decision Tree Learning

4. Artificial Neural Networks

5. Evaluating Hypotheses

6. Bayesian Learning

7. Computational Learning Theory

8. Instance-Based Learning

9. Genetic Algorithms

10. Learning Sets of Rules

11. Analytical Learning

12. Combining Inductive and Analytical Learning

13. Reinforcement Learning

Appendix

Notation

Indexes

Author Index

Subject Index

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值