【网络流】最大流:点带需求的流通、边带下界的流通

本文探讨了网络流问题中点带需求的流通与边带下界的流通特性。在多源多汇点的场景下,如何判断是否存在满足条件的可行流通,以及如何通过转换来解决这些问题。点带需求的流通可通过构造新网络寻找最大s-t流来判断可行性,而边带下界的流通则不需要考虑反向边,以避免后悔操作。
摘要由CSDN通过智能技术生成

1)点带需求的流通:

新的框架特点:有多个供给点(d(v)<0),都称作源点;有多个需求点(d(v)>0),都称作汇点。同时仍然满足传统最大流中的容量条件(0 <= f(e) <= cap(e))和需求条件(f_in(v) - f_out(v) = d(v))。

需要解决的问题:由于有多个源点和汇点,所以不再考虑最大化问题,而是考虑有没有满足容量条件和需求条件的一个可行流通(可行性)。


判断可行性的方法是,把带需求{ d(v) }的可行流通问题转换为在另一个网络中找最大 s-t 流的问题。另一个网络的构造方法如下


给个例子就是这样的:


在G‘中找最大 s-t 流,那么最大流的值是多少才能证明原图G中存在可行流通?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值