# Keras（1）：Keras安装与简介

sudo pip install keras

sudo python setup.py install

keras在theano之上，在学习keras之前，先理解了这几篇内容：

http://blog.csdn.net/mmc2015/article/details/42222075（LR）

http://www.deeplearning.net/tutorial/gettingstarted.html和http://www.deeplearning.net/tutorial/logreg.html（Classifying MNIST digits using Logistic Regression

import numpy
import theano
import theano.tensor as T
rng = numpy.random

N = 400                                   # training sample size
feats = 784                               # number of input variables

# generate a dataset: D = (input_values, target_class)
D = (rng.randn(N, feats), rng.randint(size=N, low=0, high=2))
training_steps = 10000

# Declare Theano symbolic variables
x = T.matrix("x")
y = T.vector("y")

# initialize the weight vector w randomly
#
# this and the following bias variable b
# are shared so they keep their values
w = theano.shared(rng.randn(feats), name="w")

# initialize the bias term
b = theano.shared(0., name="b")

print("Initial model:")
print(w.get_value())
print(b.get_value())

# Construct Theano expression graph
p_1 = 1 / (1 + T.exp(-T.dot(x, w) - b))   # Probability that target = 1
prediction = p_1 > 0.5                    # The prediction thresholded
xent = -y * T.log(p_1) - (1-y) * T.log(1-p_1) # Cross-entropy loss function
cost = xent.mean() + 0.01 * (w ** 2).sum()# The cost to minimize
gw, gb = T.grad(cost, [w, b])             # Compute the gradient of the cost
# w.r.t weight vector w and
# bias term b
# following section of this tutorial)

# Compile
train = theano.function(
inputs=[x,y],
outputs=[prediction, xent],
updates=((w, w - 0.1 * gw), (b, b - 0.1 * gb)))
predict = theano.function(inputs=[x], outputs=prediction)

# Train
for i in range(training_steps):
pred, err = train(D[0], D[1])

print("Final model:")
print(w.get_value())
print(b.get_value())
print("target values for D:")
print(D[1])
print("prediction on D:")
print(predict(D[0]))

0）预处理数据

# generate a dataset: D = (input_values, target_class)

1）定义变量

# Declare Theano symbolic variables

2）构建（图）模型

# Construct Theano expression graph

3）编译模型，theano.function()

# Compile

4）训练模型

5）预测新数据

# Train

print(predict(D[0]))

http://keras.io/

keras有两种模型，序列和图，不解释。

from keras.models import Sequential
model = Sequential() #1定义变量

from keras.layers.core import Dense, Activation

from keras.optimizers import SGD
model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.01, momentum=0.9, nesterov=True)) #3编译模型

model.fit(X_train, Y_train, nb_epoch=5, batch_size=32) #4训练模型

objective_score = model.evaluate(X_test, Y_test, batch_size=32)

classes = model.predict_classes(X_test, batch_size=32) #5预测模型
proba = model.predict_proba(X_test, batch_size=32)