113基于机器学习预测学生考试成绩

本文介绍如何运用机器学习预测学生考试成绩,通过Python实现,利用训练数据集训练多种模型如线性回归、随机森林、决策树等,其中MLP模型在验证集上的准确率高达99.86%。还提供了一个可视化界面,输入课程数和学习时长即可预测分数。
摘要由CSDN通过智能技术生成

本期给大家介绍的是113基于机器学习预测学生考试成绩,效果图如下:

这是调用训练好的模型来识别的,运行python 03pyqt.py的可视化界面,通过输入学生的课程数和学习总时长来预测最后的分数。

代码下载和视频演示地址:

113基于机器学习预测学生考试成绩_哔哩哔哩_bilibili

代码整体是非常简便的,总共两个py部分和一个数据集在data文件夹下。

Data数据如下,前两列是学生的上课数量和学习时长,后一列是学习分数。

运行01main.py中一共

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值