UVa 11371 - Number Theory for Newbies

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/mobius_strip/article/details/46808145

題目:給你一個數字n,將裡面每位的數重新組合形成a,b,使得a-b最大且是9的倍數。

分析:數論。題目要求a,b和n的位數相同,不能有前導0。

            定理1:交換一個數字中的某兩個位的數,形成的新數組和原數字之差是9的倍數;

            證明1:設數字為abc..i..j...xwz,其中每个字母代表一个位,对应值可以相同,

                          那么随意交换两位i,j得到的新数字为abc..j..i..xwz,做差为9..90..0 *(i-j),

                          所以一定是9的倍数,得证。

           通過上面定理可以繼續證明,任意交換任意位數字形成的新數字和原數字的差是9的倍數;

           所以取a為最大組合,即遞減序,b為遞增序即可;

           但是,這裡要求位數相同,所以b取首尾不是0的數字的最小值,先取遞增序,

           然後,交換第一個非0數和首位的1即可。

說明:╮(╯▽╰)╭。

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>

using namespace std;

bool cmp1(char a, char b)
{
	return a < b;
}

bool cmp2(char a, char b)
{
	return a > b;
}

int main()
{
	char buf[31];
	while (gets(buf)) {
		int len = strlen(buf);
		long long A = 0LL, B = 0LL;
		sort(buf, buf+len, cmp1);
		if (buf[0] == '0') {
			for (int i = 0; i < len; ++ i)
				if (buf[i] != '0') {
					swap(buf[i], buf[0]);
					break;
				}
		}
		for (int i = 0; i < len; ++ i)
			A = A*10LL + buf[i]-'0';
		sort(buf, buf+len, cmp2);
		for (int i = 0; i < len; ++ i)
 			B = B*10LL + buf[i]-'0';
 		printf("%lld - %lld = %lld = 9 * %lld\n",B,A,B-A,(B-A)/9LL);
	}
    return 0;
}


阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页