NURBS曲线 和 NURBS曲面

NURBS曲线

NURBS曲线(非均匀有理B样条)是由分段有理B样条多项式基函数定义的,k阶NURBS曲线的定义如下:

P ( t ) = ∑ i = 0 n w i P i N i , k ( t ) ∑ i = 0 n w i N i , k ( t ) = ∑ i = 0 n P i R i , k ( t ) P(t)=\frac{\sum_{i=0}^{n}w_{i}P_{i}N_{i,k}(t)}{\sum_{i=0}^{n}w_{i}N_{i,k}(t)}=\sum_{i=0}^{n}P_{i}R_{i,k}(t) P(t)=i=0nwiNi,k(t)i=0nwiPiNi,k(t)=i=0nPiRi,k(t)

R i , k ( t ) = w i N i , k ( t ) ∑ j = 0 n w j N j , k ( t ) R_{i,k}(t)=\frac{w_{i}N_{i,k}(t)}{\sum_{j=0}^{n}w_{j}N_{j,k}(t)} Ri,k(t)=j=0nwjNj,k(t)wiNi,k(t)

NURBS曲线的性质

R i , k ( t ) R_{i,k}(t) Ri,k(t)具有k阶B样条基函数类似的性质

  1. 局部支撑性: R i , k ( t ) = 0 R_{i,k}(t)=0 Ri,k(t)=0, t ∉ [ t i , t i + k ] t\notin [t_{i},t_{i+k}] t/[ti,ti+k]
  2. 权性: ∑ i = 0 n R i , k ( u ) = 1 \sum_{i=0}^{n}R_{i,k}(u)=1 i=0nRi,k(u)=1
  3. 可微性:如果分母不为零,在节点区间内是无限次连续可微的,在节点处(k-1-r)次连续可导,r是该节点的重复度

NURBS曲线与B样条曲线具有类似的几何性质

  1. 局部性质
  2. 局变差减小性质
  3. 凸包性
  4. 在仿射与透射变换下的不变性
  5. 在曲线定义域内有与有理基函数同样的可微性
  6. 如果某个权因子为零,那么相应控制顶点对曲线没有影响
圆锥曲线的NURBS表示

取节点向量 T = [ 0 , 0 , 0 , 1 , 1 , 1 ] T=[0,0,0,1,1,1] T=[0,0,0,1,1,1],为则NURBS曲线退化为二次Bézier曲线,且可以证明,这是圆锥曲线弧方程。

P ( t ) = ( 1 − t 2 ) w 0 P 0 + 2 t ( 1 − t ) w 1 P 1 + t 2 w 2 P 2 ( 1 − t 2 ) w 0 + 2 t ( 1 − t ) w 1 + t 2 w 2 P(t)=\frac{(1-t^2)w_{0}P_{0}+2t(1-t)w_{1}P_{1}+t^2w_{2}P_{2}}{(1-t^2)w_{0}+2t(1-t)w_{1}+t^2w_{2}} P(t)=(1t2)w0+2t(1t)w1+t2w2(1t2)w0P0+2t(1t)w1P1+t2w2P2

其中, C s f = w 1 2 w 0 w 2 C_{sf}=\frac{w_{1}^2}{w_{0}w_{2}} Csf=w0w2w12 称为形状因子, C s f C_{sf} Csf 的值确定了圆锥曲线的类型

C s f = 1 C_{sf}=1 Csf=1 时,上式是抛物线弧
C s f ∈ ( 1 , ∞ ) C_{sf}\in(1,\infty) Csf(1,) 时,上式是双曲线弧
C s f ∈ ( 0 , 1 ) C_{sf}\in(0,1) Csf(01) 时,上式是椭圆弧
C s f = 0 C_{sf}=0 Csf=0 时,上式退化为一对直线段P0P1和P1P2
C s f → + ∞ C_{sf}\rightarrow+\infty Csf+ 时,上式退化为连接两点P0P2的直线段

在这里插入图片描述

在这里插入图片描述

NURBS曲线的修改

常用的方法有修改权因子、控制点和反插节点

  1. 修改权因子: 当保持控制顶点和其它权因子不变,减少或增加某权因子时,曲线被推离或拉向相应顶点
  2. 修改控制顶点: 修改控制顶点的位置,曲线随之变形
  3. 反插节点法

NURBS曲面

定义

P ( u , v ) = ∑ i = 0 m ∑ j = 0 n w i j P i j N i , p ( u ) N j , q ( v ) ∑ i = 0 m ∑ j = 0 n w i j N i , p ( u ) N j , q ( v ) = ∑ i = 0 m ∑ j = 0 n P i j R i , p ; j , q ( u , v ) P(u,v)=\frac{\sum_{i=0}^{m}\sum_{j=0}^{n}w_{ij}P_{ij}N_{i,p}(u)N_{j,q}(v)}{\sum_{i=0}^{m}\sum_{j=0}^{n}w_{ij}N_{i,p}(u)N_{j,q}(v)}=\sum_{i=0}^{m}\sum_{j=0}^{n}P_{ij}R_{i,p;j,q}(u,v) P(u,v)=i=0mj=0nwijNi,p(u)Nj,q(v)i=0mj=0nwijPijNi,p(u)Nj,q(v)=i=0mj=0nPijRi,p;j,q(u,v), u , v ∈ [ 0 , 1 ] u,v\in[0,1] u,v[0,1]

R i , p ; j , q ( u , v ) = w i j N i , p ( u ) N j , q ( v ) ∑ r = 0 m ∑ s = 0 n w r s N r , p ( u ) N s , q ( v ) R_{i,p;j,q}(u,v)=\frac{w_{ij}N_{i,p}(u)N_{j,q}(v)}{\sum_{r=0}^{m}\sum_{s=0}^{n}w_{rs}N_{r,p}(u)N_{s,q}(v)} Ri,p;j,q(u,v)=r=0ms=0nwrsNr,p(u)Ns,q(v)wijNi,p(u)Nj,q(v)

规定四角点处用正权因子,即 w 00 , w m 0 , w 0 n , w m n > 0 w_{00},w_{m0},w_{0n},w_{mn}>0 w00,wm0,w0n,wmn>0,其余 w i j ≥ 0 w_{ij}≥0 wij0

性质

与非有理B样条基函数相类似的性质:

  1. 局部支承性质
  2. 权性
  3. 可微性:在重复度为r的u节点处沿u向是p-r-1次连续可微,在重复度为r的v节点处沿v向是q-r-1次连续可微
  4. 极值.若p,q>1,恒有一个极大值存在
  5. 是双变量B样条基函数的推广
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值