Many-Class Few-Shot Learning on Multi-Granularity Class Hierarchy
Published in: IEEE Transactions on Knowledge and Data Engineering ( Volume: 34, Issue: 5, May 1 2022)
many-class few-shot? 类别很多,但是每个类别的样本数量很少(less then 100)
1、在类别多且各个类别样本多的情况下,DNN具有非凡的力量,但当每个类只有少数样本可供训练时,其性能就会急剧下降。在实际应用中,从边缘设备获取稀有物种或个人数据的样本通常是困难的,昂贵的,并且由于隐私保护可能会被禁止。在多类情况下,即使每类增加一个额外注释的样本也是非常昂贵的,需要大量的人力。此外,训练集不可能在实践中完全平衡所有的类。在这些少有的学习场景中,深度模型的能力不能得到充分的利用,并且变得更难将模型推广到未见过的数据上。
2、解决方法:meta-learning?(应该是增强学习的一篇文章,看不懂)