coarse-to-fine(4) meta-learning

Many-Class Few-Shot Learning on Multi-Granularity Class Hierarchy

Published in: IEEE Transactions on Knowledge and Data Engineering ( Volume: 34, Issue: 5, May 1 2022)

many-class few-shot? 类别很多,但是每个类别的样本数量很少(less then 100)

1、在类别多且各个类别样本多的情况下,DNN具有非凡的力量,但当每个类只有少数样本可供训练时,其性能就会急剧下降。在实际应用中,从边缘设备获取稀有物种或个人数据的样本通常是困难的,昂贵的,并且由于隐私保护可能会被禁止。在多类情况下,即使每类增加一个额外注释的样本也是非常昂贵的,需要大量的人力。此外,训练集不可能在实践中完全平衡所有的类。在这些少有的学习场景中,深度模型的能力不能得到充分的利用,并且变得更难将模型推广到未见过的数据上。

2、解决方法:meta-learning?(应该是增强学习的一篇文章,看不懂)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值