coarse-to-fine(6) - DML

Fine-Grained Visual Categorization via Multi-stage Metric Learning

细粒度视觉分类(FGVC)是指将对象归入从属类而不是基本类。FGVC的一个主要挑战是两个问题的共同存在。1)许多从属类高度相关,难以区分;2)存在较大的类内变化(例如,由于物体的姿势)。本文提出通过距离度量学习(DML)明确地解决上述两个问题。DML通过学习嵌入来解决第一个问题,使来自同一类别的数据点被拉到一起,而来自不同类别的数据点应该被相互推开;它通过允许同一类别的邻居中只有一部分(而不是所有的数据点)需要被拉到一起的灵活性来解决第二个问题。

流行的FVGC的管道包括两个步骤,特征提取步骤和分类步骤。特征提取步骤,有时与分割[1, 7, 24]、部位定位[2, 35]或两者结合[6],是为了提取图像级别的表示,流行的选择包括LLC特征[1]、Fisher向量[14]等。最近的一个发展是在大规模的图像数据集(如ImageNet[26])上训练卷积神经网络(CNN)[18],然后使用训练好的模型来提取特征[12]。

对于分类步骤,许多现有的FGVC方法直接为每个细粒度的类学习一个单一的分类器,使用一比一的策略[1, 2, 7, 35]。显然,这种策略对细粒度类的数量没有很好的扩展性,而FGVC中的下属类的数量可能非常大(例如,在birds11数据集中有200个类)。此外,这种一刀切的方案只是为了解决这两个问题中的第一个问题,即努力分离不同的类而不对类内的变化进行建模。在本文中,我们提出了一种距离度量学习(DML)方

<think>好的,我需要回答用户关于“coarse-to-fine 方法在计算光流中的应用及实现”的问题。首先,我应该明确什么是coarse-to-fine方法,以及它在光流计算中的具体应用。根据用户提供的引用[^1],里面提到多尺度策略,也就是金字塔结构,用于处理大位移问题。这应该是coarse-to-fine方法的核心。 接下来,我需要解释coarse-to-fine方法的基本原理。可能涉及图像金字塔的构建,从低分辨率(粗尺度)到高分辨率(细尺度)逐步优化光流。引用中提到的非线性公式改变光流约束方程,可能需要用线性化和迭代方法处理每个尺度,这可能涉及到如Horn-Schunck方法的扩展。 然后,实现步骤可能需要分点说明:图像金字塔的创建、光流初始估计、迭代细化、运动增量计算等。每个步骤需要结合用户提供的引用内容,特别是多尺度策略和金字塔结构的作用。 用户还提到了性能优化和应用场景,可能需要在相关问题中提及,比如如何处理大位移、优化收敛速度等。需要确保回答结构清晰,分步骤解释,并引用提供的资料。 另外,注意使用正确的中文表达,数学公式需要用$$...$$和$...$格式。例如,光流约束方程可能需要用LaTeX表示,如$I_x u + I_y v + I_t = 0$。还有金字塔层间的运动传播公式,如$u^{k} = 2(u^{k-1} + \Delta u^{k})$。 需要检查是否有遗漏的关键点,比如非线性方程的处理、迭代方法的应用,以及金字塔结构如何逐步完善解决方案。同时,确保回答中的技术术语准确,比如多尺度策略、运动增量、线性化等。 最后,生成的相关问题要围绕实现细节、优化方法和应用场景展开,帮助用户进一步探索。例如,如何构建图像金字塔,或coarse-to-fine方法的优缺点。 总结思考步骤:定义coarse-to-fine方法,解释其在光流中的必要性,详细步骤分点说明,结合引用内容,数学公式正确使用,生成相关问题。</think>### Coarse-to-Fine光流计算方法实现 **1. 基本原理** Coarse-to-Fine方法通过多尺度图像金字塔(从低分辨率到高分辨率)逐步优化光流,解决大位移问题。其核心思想是:在粗尺度上捕捉大范围运动,再在细尺度上逐步修正细节。 **2. 实现步骤** **(1) 构建图像金字塔** - 对输入图像$I_1, I_2$进行降采样,生成多尺度图像序列: $$I^k = \text{downsample}(I^{k-1})$$ 其中$k=0$为原始分辨率,$k=K$为最粗尺度。 **(2) 光流初始化** 在最粗尺度($k=K$)初始化光流场$(u^K, v^K)$,通常设为零或简单运动模型。 **(3) 迭代细化过程** 从粗到细逐层优化: 1. **上采样传播**:将上一层的粗尺度光流$u^{k}, v^{k}$上采样到下一层: $$u^{k-1} = 2 \cdot \text{resize}(u^{k})$$ $$v^{k-1} = 2 \cdot \text{resize}(v^{k})$$ 2. **非线性约束方程**:基于光流约束方程改进运动估计: $$I_x(u + \Delta u) + I_y(v + \Delta v) + I_t = 0$$ 其中$\Delta u, \Delta v$为当前尺度的运动增量。 3. **线性化与迭代**:通过泰勒展开线性化方程,用迭代法(如Gauss-Newton)求解增量。 4. **增量叠加**: $$u^{k-1} \leftarrow u^{k-1} + \Delta u$$ $$v^{k-1} \leftarrow v^{k-1} + \Delta v$$ **(4) 最终优化** 在最细尺度($k=0$)输出光流场$(u^0, v^0)$。 **3. 关键技术点** - **金字塔层数**:通常3-5层,降采样因子为0.5 - **运动增量计算**:使用加权最小二乘法优化能量函数,如: $$E = \sum (I_x\Delta u + I_y\Delta v + I_t)^2 + \lambda(|\nabla \Delta u|^2 + |\nabla \Delta v|^2)$$ - **变形补偿**:在每层迭代时对图像进行变形(warping)以提高精度 **伪代码示例** ```python def coarse_to_fine_flow(img1, img2, max_level=4): pyramid1 = build_gaussian_pyramid(img1, max_level) pyramid2 = build_gaussian_pyramid(img2, max_level) flow = initialize_zero_flow(pyramid1[-1].shape) for level in reversed(range(max_level)): scaled_img1 = pyramid1[level] scaled_img2 = warp_image(pyramid2[level], flow) for iter in range(max_iterations): delta_flow = compute_flow_increment(scaled_img1, scaled_img2) flow = refine_flow(flow, delta_flow) if level > 0: flow = upsample_flow(flow, pyramid1[level-1].shape) return flow ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值