【论文复现PaddlePaddle】 Learning Spatio-Temporal Features with 3D Residual Networks for Action Recognit

本文介绍了基于PaddlePaddle复现的论文——使用3D残差网络学习时空特征进行动作识别。对比了2D ResNets和C3D网络,3D ResNets在ActivityNet和Kinetics数据集上展示出优越性能,尤其是在大规模数据集上避免过拟合。
摘要由CSDN通过智能技术生成

【论文复现PaddlePaddle】 # Learning Spatio-Temporal Features with 3D Residual Networks for Action Recognition(一)论文阅读

这篇文章是一篇2017ICCV ,该篇论文提出了一种基于2D ResNets 的3D ResNets网络结构。

卷积神经网络在动作识中有着较高的性能,基于CNN的动作识别的流行方法之一是二维卷积核的双流CNN,由RGB和叠加光流帧组成的双流体系结构来获取视频中的时空信息。另一种是使用3D卷积核提取视频中的时空特征。由于已有的C3D网络会产生大量参数,整个网络的体系结构相对较浅,对动作的识别还不够,于是作者就加入了ResNets网络。
尽管模型的参数依然很多,但是比相对较浅的网络(如 C3D)获得了更好的性能。

网络结构

论文中提出了一种3D ResNets 的网络结构。输入大小为3 × 16 × 112 × 112。每个卷积层后面都有批归一化和RELU。 下采样由conv3_1, conv4_1, conv5_1执行, 步长为2。最后一个完全连接层的维度被设置为Kinetics数据集(400个类别)

残差结构
网络结构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>