OpenCV--SVM多分类问题

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/heroacool/article/details/50997024
                                        <div class="markdown_views">
            <p>物体识别中经常遇到多分类器问题,svm是比较成熟和直接的想法。一般来说使用svm作为多分类器主要有以下思路:</p>
  1. 一对多(one-vs-all)。训练时依次将目标类别作为正样本,其余样本作为负样本,以此训练n个svm。这个在Andrew Ng的Machine leaning的课上介绍过。
    缺点:因为训练集是1:N的情况,存在较大的bias,不是特别实用。

  2. 一对一(one-vs-one)。训练时,任意两类样本之间训练一个svm,则n类别,训练出(n-1)n/2个svm。在runtime时,对一个未知样本分类,则使用投票的法方法。libsvm即使用的该种方法。
    缺点:类别多的时候,(n-1)n/2个支持向量机,计算代价大。

  3. 层次支持向量机。首先将所有类别分类为两个子类,再将子类进一步划分为两个子类,直到单独子类为止。好像一棵树耶。具体请参考:刘志刚, 李德仁, 秦前清, 等. 支持向量机在多类分类问题中的推广[J]. 2004.

  4. DAG-SVMS。由Platt提出的决策导向的循环图DDAG导出的,是针对“一对一”SVMS存在误分、拒分现象提出的。请参考论文

简单示例
#include <opencv2/core.hpp>




#include <opencv2/imgproc.hpp> #include "opencv2/imgcodecs.hpp" #include <opencv2/highgui.hpp> #include <opencv2/ml.hpp> using namespace cv; using namespace cv::ml; Vec3b getRandomColor(){ RNG rng(clock()); return Vec3b(rng.next() % 255, rng.next() % 255, rng.next() % 255); } int main( int, char **) { // Data for visual representation int width = 512, height = 512; Mat image = Mat::zeros(height, width, CV_8UC3); // Set up training data int labels[ 4] = { 1, 2, 3, 4}; float trainingData[ 4][ 2] = { { 100, 10}, { 10, 500}, { 500, 10}, { 500, 500} }; Mat trainingDataMat( 4, 2, CV_32FC1, trainingData); Mat labelsMat( 4, 1, CV_32SC1, labels); // Train the SVM //! [init] Ptr<SVM> svm = SVM::create(); svm->setType(SVM::C_SVC); svm->setKernel(SVM::POLY); svm->setDegree( 1.0); svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6)); //! [init] //! [train] // svm->train(trainingDataMat, ROW_SAMPLE, labelsMat); // Ptr<TrainData> auto_train_data = TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat); // svm->trainAuto(auto_train_data); svm->train(trainingDataMat, ROW_SAMPLE, labelsMat); //! [train] // Show the decision regions given by the SVM //! [show] Vec3b green( 0, 255, 0), blue ( 255, 0, 0), red( 0, 0, 255),yellow( 0, 255, 255); for ( int i = 0; i < image.rows; ++i){ for ( int j = 0; j < image.cols; ++j){ Mat sampleMat = (Mat_< float>( 1, 2) << j,i); float response = svm->predict(sampleMat); double ratio = 0.5; if (response == 1) image.at<Vec3b>(i,j) = green *ratio; else if (response == 2) image.at<Vec3b>(i,j) = blue *ratio; else if(response == 3){ image.at<Vec3b>(i,j) = red *ratio; } else if(response == 4){ image.at<Vec3b>(i,j) = yellow *ratio; } } } int thickness = - 1; int lineType = 8; circle( image, Point( 100, 10), 5, Scalar( 0, 255, 0), thickness, lineType ); circle( image, Point( 10, 500), 5, Scalar( 255, 0, 0), thickness, lineType ); circle( image, Point( 500, 10), 5, Scalar( 0, 0, 255), thickness, lineType ); circle( image, Point( 500, 500), 5, Scalar( 0, 255, 255), thickness, lineType ); thickness = 2; lineType = 8; Mat sv = svm->getSupportVectors(); std::cout << sv << std::endl; for ( int i = 0; i < sv.rows; ++i){ const float* v = sv.ptr< float>(i); circle( image, Point( ( int) v[ 0], ( int) v[ 1]), 6, CV_RGB( 128, 128, 128), 2); } imwrite( "result.png", image); // save the image imshow( "SVM Simple Example", image); // show it to the user waitKey( 0); }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83

效果:
这里写图片描述

注意点:
使用RBF核或者使用autotrain,参数选择十分重要。不行你试试哟!!!



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值