- 员工排班模型
- 模型构建
- 排班原则
- 模型构建
- (一)以解决痛点为导向
- 作为作业现场主管,需提前一周将作业员未来- -周上班安排发出,包括作业岗位,班次等信息。而排班时需综合考虑现场管理和公司制度,因需要人为平衡出勤的排班目标和基础条件,因此,主管在排班时经常需要反复检查和修正。
- (二)科学合理原则
- 通过对排班场景的观察,了解排班的需求,判断为可利用运筹学中的线性规划工具,通过将现场要求和公司制度转化为约束条件输入,上班与否可用“0-1” 变量体现,平衡出勤工时作为模型整体目标。
-
-
- 目标函数
-
- 排版模型中主要设定两个角色,一个为管理者,一个为普通员工。通过对普通员工和管理的的不同目标值设定目标函数。仓储作业生产中最大的资源投入是人员。为保证每日的运营生产,在总出勤工时方面需最大化地平衡员工当月的总工时,包括已上班工时和预排班工时,避免出现月底时无人开工的现象。设定管理者薪资为1.5,普通员工薪资为1,求得整体薪资最低时的函数。
-
- 排班约束
-
- 作业现场主管,最迟不晚于当周五之前,需将作业员未来-1 周的上班安排发出,包括作业岗位,班次等信息。排班时需综合考虑现场管理和公司制度,约束因素如下:
- 连续出勤:制度要求所有员工不得连续出勤7天或以上,排班表上不能有连续7天的上班安排,包括跨周连接期。因此排班需同时结合前一周 的上班安排
- 本文分别从多个方面设置了6个独立的约束模块。根据企业的实际现状与要求选择其中相应的约束模块,使得排班模型获得的排班结果更加适合企业。
- 约束模块1:主要从作业姿势的变化出发,使得工人每天的工作交替变化,从而身体同一个部位的工作负荷交替变化可以避免工人连续从事高负荷工作而得到休息时间。
- 约束模块2:为了均衡负荷风险值,每位工人受到的风险程度都应该在一定合理范围的要求之内,避免个别工人承受高额的工作风险。
- 约束模块3:考虑到工人肌肉的提举等能力的不同,在从事体力作业环境下,工人承受的作业重量负荷应该在合理的范围内,超过工人自身最大的能力时继续作业可能造成严重的伤害,因此设立肌肉约束。
- 约束模块4:工人由于个体的差异,作业时候身体所可接受的时间不同,因此根据MET的要求考虑工作情况进行合理安排,使工人都处于合理的作业时间内。
- 约束模块5:考虑工人的疲劳积累,使得工人在相连的两个休息段的时间内疲劳积累值不超过额定值。
- 约束模块6:不同的工人操作不同任务的技术系数不同,熟练程度的差异导致企业的产量会存在波动,企业在特定时期需要优先满足生产的需求。因此为解决排班与生产之间可能存在的矛盾,对总生产和关键工位的生产能力上设置最低的标准要求。
-
-
- 参数设定
-
- 设x,为员工i在第n周第j天的排班出勤(i=1,2. .. 16,j=,2.7,n=1,2 .52), Yin为员工i截止到第n周的预估出勤工时(=1,2..16, n=1,2 .52),Zjn为员工员工i在第n周第j天的连续出勤天数(i=1,2... 16,j=1,2.7,n=1,2.52),Qjn为第n周第j天的排班人数要求(j=1,2..7, n=1,2.52)
- 目标函数为总体薪资最少。
- 在平峰的薪资最优化中,x6-26设置为200一天,x1-5设置为10000元一天,采用大M法的思想对员工进行剔除,即原来员工只有20个。
- 设x,为员工i在第n周第j天的排班出勤(i=1,2. .. 16,j=,2.7,n=1,2 .52), Yin为员工i截止到第n周的预估出勤工时(=1,2..16, n=1,2 .52),Zjn为员工员工i在第n周第j天的连续出勤天数(i=1,2... 16,j=1,2.7,n=1,2.52),Qjn为第n周第j天的排班人数要求(j=1,2..7, n=1,2.52)
- 排班总目标是最大化平衡所有员工的出勤工时,目标为截止第n周员工整体出勤工时极值差最小,由此列出如下目标函数:
- Z = MAX(Ym)一MIIN(Ymn) (n= 1,2,. ,52)
- 约束条件为
- SUM(X1,X2,..。。 X5)=<3----------------------------------星期一总排班人数等于3;
- SUM(X12,X22 ...X162)<4------------------------------------星期二总排班人数等于4
- SUM(X13, X23..X163)<2----------------------------------星期三总排班人数等于2;
- SUM(X14, X24..X164)<3-------------------------------------星期四总排班人数等于3;
- SUM(X15,X25..X165)<3-------------------------------------星期五总排班人数等于3;
- SUM(X16,X26.. X166)=4------------------------------------每人总排班天数为小于4;
- 资源受限项目调度(RCPSP)作为一类重要的调度模型,广泛存在于制造、建筑等领域,其最大的特点是考虑资源为可更新资源,即资源在任务结束后立即释放,同时项目进程中资源总量不发生改变.然而,在许多实际装配生产系统中,例如飞机移动装配中,人力资源以排班的形式进行装配生产活动,其可用量会在生产过程中会受到排班的影响,因此事先制定的调度计划与实际的生产进度存在很大差距.此时,调度的关键在于如何将人力资源进行合理的排班,以确定每个班次下的人力资源数量,并在排