【马克拉伯】毛刺检测算法

在工业领域,想必有很多朋友们对毛刺一定不陌生,尤其是机械加工过程中,它是无处不在的,不论你采用多么高级的精密的设备,它都会伴随产品一起诞生。

机械零件上的毛刺, 有些是由于切削加工过程中塑性变形引起的;有些是铸造、模锻等加工的飞边, 还有些是焊接挤出的残料。毛刺的存在对零件的加工精度、装配精度、再加工定位和外观质量等许多方面都会产生不良影响。

这个时候就会有广大群众惆怅到:肿么办???这毛刺到底肿么办??

今天,小编就为大家分享如何运用SGVision去毛刺的方法。

既然要去毛刺那必然是用到咱们SGVision软件当中毛刺检测这一算法了,针对毛刺呢软件提供了四种不用的检测工具,分别是毛刺检测毛刺对比圆孔毛刺直线毛刺。不同的检测算法相应的检测功能与适用性也有所不同,那接下来就一一来学习一下这四种毛刺检测的运用吧!

FUYANGTIANDITHE GARDENPhase1

毛刺检测 :本算法用于在划定的检测区域内检测出毛刺并测量出毛刺面积大小,从而判断产品的OK/NG

✔参数学习

【灰度低阈值】:设置值应≤目标区域灰度值,界定毛刺灰度范围的最小值;

【灰度高阈值】:设置值应≥目标区域灰度值,界定毛刺灰度范围的最大值;

【领域尺寸】:用来界定凸起或者凹陷是否为毛刺的参数,小于此值则是毛刺;

【面积阈值】:预设最小毛刺的下限面积,超过该值则为毛刺;

毛刺检测算法实际应用场景:检测产品是否存在飞边、毛刺(如手机外壳等)

我们先打开SGVision软件,按【F4】快捷键进入算法页面,导入需要检测的图片选择检测栏目选中毛刺检测】。

我们可以看一下它的参数,设定一个灰度范围,用来表示目标灰度是什么。同时可以选择说检测凸起或者检测凹陷。领域尺寸呢就是限定说我在多少范围内检测凸起、凹陷。

毛刺检测的算法工具呢使用范围比较有限,因为它没有办法设置太多的东西。

先来检测一下这张图片

 

可以看到把上面的毛刺都检测出来了

但是没有基准之类的鲜艳信息

,时长00:18

假设我们把检测凹陷勾选起来,

检测凸起去掉的话,

来看看是什么结果

 

可以看到它就帮我们找到了内凹的缺陷,但是我们发现检测结果出现了差异,把背景位置的地方也检测出来了,实际上不属于凹陷。所以说毛刺检测工具整体的功能只限于说它自己会判断图片当中有一些边角的地方NG的区域,它就是适用于比较小的比较平整的物体。

FUYANGTIANDITHE GARDENPhase2

毛刺对比:本算法用于比对轮廓寻找毛刺

✔参数学习

边缘低阈值】:根据边缘灰度值设置,设置值<=边缘灰度值;

边缘高阈值】:根据边缘灰度值设置,设置值>=边缘灰度值;

宽度阈值】:毛刺在水平方向像素点个数;

高度阈值】:毛刺在竖直方向像素点个数;

使用直线距离】:毛刺宽度和高度在计算判断的时候,是指毛刺根部到最外面端点的最小直线距离(点到点之间的直线距离),与最外面的端点有关,与毛刺的弯曲程度无关;

使用连通域距离】:毛刺宽度和高度在计算判断的时候,是指毛刺从根部到最外面端点的弯曲距离(点到点之间的曲线长度),与最外面的端点有关,与毛刺的弯曲程度有关;

毛刺对比算法实际应用场景 :检测物体有无毛刺(如金属端子镀层检测);

比如说我们要检测比较大的物体的话

如图检测这个圆

                 ▲合格品                                  ▲不良品

这种情况我们就可以使用【毛刺对比】工具了!

首先,先添加这张OK的圆来打开【毛刺对比】的工具。打开之后能看到【毛刺对比】有很多的辅助选项,比如说它可以设置【忽略区域】,还有一个模板的概念,我们先把这张添加为模板图,顾名思义判断它的毛刺就是跟模板来对比,它的好处就是能适应各种奇形怪状的物体!如果说用刚才的毛刺检测工具随便怎么检可能永远都是各种各样NG报警出来。

可以通过毛刺对比的方式添加一个【基准图】,再去判断两者之间的差异,这种情况下就不会说因为物体本身形状造成误检,

那我们现在导入这张NG图,这张NG图不仅是有毛刺缺陷而且有一定的位置偏移,那我们就来看看毛刺对比算法能不能把他检测出来!

,时长00:30

点击测试之后果然NG了,还画出了两个圆,左边的这个圆其实就是模板轮廓所在的位置,右边的这个圆就是实际要检测他的轮廓的位置,可以看懂到他把这两个轮廓框出来了。所以这个算法的原理其实就是对比两个轮廓之间有没有存在什么差异,高度范围与宽度范围就是为了限制差异的多少我要当做是OK/NG的。

除此之外这个圆还有位置偏移的问题,那这里就要穿插我们之前学习到的【模板匹配】了,结合模板匹配之后呢就会得到一个更吻合的效果了!

先打开算法工具,选择【模板匹配】,把OK的这张良品图设置为模板图,然后测试一下找到了,接着在毛刺对比算法当中匹配源就选择这个模板匹配。

这个时候再测试一下也找到了

,时长00:36

我们切回NG图那我们再点开这个毛刺对比,匹配源依旧选择模板匹配,测试一下发现找到了新的位置,可以看到这个模板匹配位置有发生偏移了,是这个位置的经过我们纠偏之后就把他找到了.

,时长00:19

FUYANGTIANDITHE GARDENPhase3

圆孔毛刺、直线毛刺 :本算法用于比对轮廓检测毛刺,设置毛刺检测的合格范围,从而判断产品的 OK/NG

✔参数学习

灰度低阈值:设置值应<=目标毛刺灰度值;

灰度高阈值:设置值应>=目标毛刺灰度值;

使用圆形:如果检测轮廓比较接近圆形,点选此命令;

使用椭圆:如果检测轮廓比较接近椭圆,点选此命令;

宽度阈值:代表检测毛刺的宽度参考值大小;

高度阈值:代表检测毛刺的高度参考值大小;

使用直线距离:毛刺宽度和高度在计算判断的时候,是指毛刺根部到最外面端点的最小直线距离(点到点之间的直线距离),与最外面的端点有关,与毛刺的弯曲程度无关;

使用连通域距离:毛刺宽度和高度在计算判断的时候,是指毛刺从根部到最外面端点的弯曲距离(点到点之间的曲线长度),与最外面的端点有关,与毛刺的弯曲程度有关;

圆孔毛刺算法实际应用场景: 检测产品加工后为圆形或者椭圆形的表面毛刺(如手机摄像头孔的毛刺检测)

圆孔毛刺】跟【直线毛刺】其实都是建立在毛刺对比的基础上,但是又不需要设置模板。

我们先来看一下【圆孔毛刺】,旁边合格标准的参数跟毛刺对比是一模一样的,只是多了一个使用圆形还是使用椭圆,他会把这个目标拟合一个圆,假设我们物体是一个圆的前提下或者说椭圆的前提下,把找到的物体尝试去拟合一个圆或者椭圆,拿这个实际的物体跟圆做对比。

,时长00:44

原理就是把找到的轮廓去拟合圆或者椭圆,然后把圆或者椭圆作为模板基准的形状,来跟现在实际找到的这个轮廓做一个毛刺对比。

只要他是圆或者椭圆的话,我们就可以用这个圆孔毛刺,这对于我们很多弓箭的话,比如说我们想要测量物体的内孔毛刺啊,是可以直接采用这个圆孔毛刺的。

那顾名思义【直线毛刺】也是一样的道理,就是在检测区域内找一个轮廓,参数都是一样的,他会找一条直线,然后去判断实际检测到的这条有没有坑坑洼洼。

,时长00:27

可以看到只要在我们这个检测内他自动的找到了这条直线,也无所谓方向什么的,通过比对就找出了这些坑坑洼洼的地方。

完整视频教学:遇到毛刺不要慌!SGVision学起来!icon-default.png?t=M0H8https://mp.weixin.qq.com/s/bLapaJCv8h4WYrDZwl2DNQ

 【马克拉伯】前往官网

  • 0
    点赞
  • 2
    收藏
  • 打赏
    打赏
  • 0
    评论
<p> <span style="color:#337FE5;font-size:16px;">【课程简介】</span> </p> <p> <br /> </p> <p> <span style="font-size:14px;">本课程基于面向Python的OpenCV,以OpenCV的官方文档的知识脉络为主线,</span><span style="font-size:14px;">介绍了OpenCV函数的具体使用方法、函数所使用的算法的具体原理。</span> </p> <p> <span style="font-size:14px;">在介绍函数使用时,提供了大量的程序案例演示。</span> </p> <p> <span style="font-size:14px;">在介绍具体原理时,采用了通俗易懂的语言和贴近生活的示例来说明问题,尽量避免涉及过于复杂抽象的公式。</span> </p> <p> <span style="font-size:14px;"> 课程包含数字图像处理的常用知识点,覆盖面全,方便学员系统深入全面地掌握OpenCV。</span> </p> <p> <br /> </p> <p> <span style="font-size:16px;color:#337FE5;">【你将收获什么】</span> </p> <p> <span style="font-size:16px;color:#337FE5;"><span> </span></span> </p> <p align="left" class="ql-long-10663260 ql-align-left" style="font-size:11pt;color:#494949;"> <span style="font-size:14px;">1.  掌握数字图像的在计算机内表示</span><span style="font-size:14px;"></span><span style="font-size:14px;">的方法和处理的基本原理。掌握数字图像的表示方法是进行图像处理的前提和基础,能够为后续的智能图像处理打下坚实基础。</span> </p> <p align="left" class="ql-long-10663260 ql-align-left" style="font-size:11pt;color:#494949;"> <span style="font-size:14px;">2.  使用好OpenCV开源库对于提升工作效率具有很大的帮助。OpenCV是优秀的开源库,提供了大量的函数帮助我们提升工作效率。大多数情况下,我们直接调用函数就能够满足我们的需求。同时,它的函数具有较好的交互性,能够根据需要更好地掌控图像处理的具体细节。</span> </p> <p class="ql-long-10663260" style="font-size:11pt;color:#494949;"> <span style="font-size:14px;">3.  学习图像处理的常用算法。课程不仅介绍函数的具体使用,也介绍了常用算法的基本原理,帮助学习者更好地理解图像处理的基本逻辑、方法,快速入门图像处理领域。</span> </p> <br /> <p> <br /> </p> <p> <span style="font-size:16px;color:#337FE5;">【我将如何教你】</span> </p> <p> <span style="font-size:14px;">1)在“黑盒”和“白盒“之间取得平衡</span> </p> <p> <span style="font-size:14px;"> </span><span style="font-size:14px;">可以将OpenCV看成“黑盒”,不用关心其函数是如何实现的。在需要实现某一个功能时,直接调用其对应的函数即可,像使用Photoshop的各种功能一样。也可以将OpenCV看成“白盒”,关注其每一个函数的具体实现,认真研究每一个函数的具体实现方法和实现细节。这两种方式都是学习图像处理的很好方式,但是大多数课程过于强调其中某一种,要么忽略了算法的实现、要么忽略了使用方法。本课程尽量将OpenCV在“黑盒”和“白盒”之间取得平衡。既介绍算法的原理和方法,又将重点放在如何调用函数上,让学习者能够更加游刃有余地在计算机视觉项目中使用OpenCV来解决具体的问题。</span> </p> <p> <span style="font-size:14px;"><br /> </span> </p> <p> <span style="font-size:14px;">2)将枯燥的算法采用具体的案例介绍</span> </p> <p> <span style="font-size:14px;"> 在图像处理中,有大量的算法保证了</span><span style="font-size:14px;">图像处理的准确、高效。OpenCV将一些常用的算法进行了封装,我们可以直接调用OpenCV的函数来使用对应的算法。但是,深入地理解算法能够帮助学习者更好地使用OpenCV函数。本课程尝试抛弃传统的使用复杂公式介绍算法的形式,尽量通过简单、通俗易懂的生活中实例来帮助学习者理解算法的基本逻辑</span> </p> <p> <span style="font-size:14px;"><br /> </span> </p> <p> <span style="font-size:14px;">3)案例驱动、强调实战</span> </p> <p> <span style="font-size:14px;">OpenCV是一个庞大的资源库,提供了非常多的函数帮助我们高效地处理问题。初学者使用OpenCV的最大困惑就是熟练地掌握了每一个函数的调用方法,但是在解决实际问题时,不知道具体应该使用哪个函数。本课程通过大量的具体案例帮助学习快速掌握每个函数的应用场景,快速掌握OpenCV的核心使用方法和技巧。</span><br /> <span style="font-size:14px;"></span><span style="font-size:14px;"></span> </p>

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:游动-白 设计师:我叫白小胖 返回首页
评论

打赏作者

MookLab马克拉伯

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值