【测量篇】 最小外接矩形算法

本文介绍了最小外接矩形算法在机器视觉定位中的使用,该算法用于寻找目标特征区域的最小外接矩形,以定位物体位置和姿态。通过设置灰度阈值、精度等参数,可以应用于检测物体的特征,如玻璃瓶瓶口的高度。文中通过实例展示了如何在SGVision软件中应用该算法,并强调了正确设置阈值以避免多层图形的误识别。
摘要由CSDN通过智能技术生成

Hi 又见面啦!

不知道小伙伴们最近有没有好好学习软件呢

今天我将带领大家从【测量篇】开始学习,要学习到的算法就是——最小外接矩形!

机器视觉定位方法很多如:

基于特征点匹配的基于形状基于外截圆外截矩形的等等。其中基于最小外接矩形的定位方法是我们常见的一种定位方法。

其定位机理可以概述为:通过查找目标特征区域的最小外接矩形,依据矩形的位置及方向来定位目标物体的位置与姿态。再通过与模板图像的比对,从而计算出目标物体的偏移量与旋转角度,从而引导机械手进行相应的作业。

✔算法介绍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值