46、机器学习相关概念、图像资源及版权知识

机器学习相关概念、图像资源及版权知识

1. 关键概念介绍

1.1 验证集

验证集是一组独立的观测训练示例,必要时会进行手动标注。它仅用于在训练过程中评估模型质量,也可用于选择超参数,如网络层数。

1.2 梯度消失问题

在循环网络应用 k 次后,参数 w 以 wk 的形式进入梯度。当 w < 1 时,wk 的值会变得极小,从而导致梯度消失。此时,优化器在 w 较小时不会考虑长距离相关性。解决方法是采用特殊模型,如长短期记忆网络(LSTM)。

1.3 向量

向量是一列数字,例如:
$$
\begin{pmatrix}
2.7 \
0.23 \
-8.9
\end{pmatrix}
$$
向量属于张量的一种。

2. 图像版权信息

2.1 图像通用版权说明

书中使用的照片和插图的版权信息已汇总。未特别注明出处的插图大多由作者创作,并主要由 Svenja Niehus 修订。作者和 Fraunhofer IAIS 拥有这些自创插图的版权。不过,若插图包含具有知识共享许可的其他插图部分,则适用相应部分图像的知识共享许可。以下是知识共享图像许可的链接:
| 许可类型 | 许可文本链接 |
| — | — |
| CC PDM 1.0 | 公共领域 |
| CC0 1.0 | https://creativecommons.org/publicdomain/zero/1.0/deed.en |
| CC BY 2.0 | h

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值