机器学习相关概念、图像资源及版权知识
1. 关键概念介绍
1.1 验证集
验证集是一组独立的观测训练示例,必要时会进行手动标注。它仅用于在训练过程中评估模型质量,也可用于选择超参数,如网络层数。
1.2 梯度消失问题
在循环网络应用 k 次后,参数 w 以 wk 的形式进入梯度。当 w < 1 时,wk 的值会变得极小,从而导致梯度消失。此时,优化器在 w 较小时不会考虑长距离相关性。解决方法是采用特殊模型,如长短期记忆网络(LSTM)。
1.3 向量
向量是一列数字,例如:
$$
\begin{pmatrix}
2.7 \
0.23 \
-8.9
\end{pmatrix}
$$
向量属于张量的一种。
2. 图像版权信息
2.1 图像通用版权说明
书中使用的照片和插图的版权信息已汇总。未特别注明出处的插图大多由作者创作,并主要由 Svenja Niehus 修订。作者和 Fraunhofer IAIS 拥有这些自创插图的版权。不过,若插图包含具有知识共享许可的其他插图部分,则适用相应部分图像的知识共享许可。以下是知识共享图像许可的链接:
| 许可类型 | 许可文本链接 |
| — | — |
| CC PDM 1.0 | 公共领域 |
| CC0 1.0 | https://creativecommons.org/publicdomain/zero/1.0/deed.en |
| CC BY 2.0 | h
超级会员免费看
订阅专栏 解锁全文
1153

被折叠的 条评论
为什么被折叠?



