[1] Knig M , Winkler H .Investigation of assistance systems in assembly in the context of digitalization: A systematic literature review[J].Journal of Manufacturing Systems, 2025, 78:187-199.DOI:10.1016/j.jmsy.2024.11.015.
Depending on the product, 15 % to 70 % of the total production time [7] and 20 % or more
of the total production costs are accounted for by assembly [8]
[7] Castillo Velasquez L, Permin E, Fischer J, Pyschny N. A comparative study of
digital assembly assistance systems. SSRN J 2023. https://doi.org/10.2139/
ssrn.4469555.
[8] Elmaraghy H, Elmaraghy W. Smart adaptable assembly systems. Procedia CIRP
2016;44:4–13. https://doi.org/10.1016/j.procir.2016.04.107
[1] Eswaran M , Gulivindala A K , Inkulu A K ,et al.Augmented reality-based guidance in product assembly and maintenance/repair perspective: A state of the art review on challenges and opportunities[J].Expert Syst. Appl. 2023, 213:118983.DOI:10.1016/j.eswa.2022.118983.
Researchers stated that 30–40 % of manufacturing time, 20–40 % of manufacturing costs are dependent on the decisions taken in the assembling phase of the product development stage (Bahubalendruni & Biswal, 2018). Assembly aspects significantly in f luence the other stages in the product life, such as repair& maintenance and end of life.
Bahubalendruni, M. R., & Biswal, B. B. (2018). An intelligent approach towards optimal assembly sequence generation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(4), 531–541. https://doi.org/ 10.1177/0954406216684159
Li W , Xu A , Wei M ,et al.Deep learning-based augmented reality work instruction assistance system for complex manual assembly[J].Journal of Manufacturing Systems, 2024, 73(000):307-319.DOI:10.1016/j.jmsy.2024.02.009.
Assembly operations are important in producing industrial products. Traditional product assembly incurs considerable manpower and time, generally accounting for 20–70% of the total manufacturing workload [1]. The assembly of numerous complex products (such as engines, aerospace equipment, and marine equipment) is
[1]Wang CH, Cheng CY. Development of a dual-projected-based automated interference matrix algorithm for industry 4.0. Procedia Manuf 2017;11:141–6. https://doi.org/10.1016/j.promfg.2017.07.212.