Jensen不等式及其详细证明——Emmm...?Emmm...! EM算法(1)

E m m m . . . ? Emmm...? Emmm...?
E m m m . . . ! Emmm...! Emmm...!
接 下 来 的 几 篇 博 客 , 我 们 来 聊 聊 传 说 中 的 E M 算 法 接下来的几篇博客,我们来聊聊传说中的EM算法 EM
J e n s e n 不 等 式 将 在 之 后 的 E M 算 法 的 证 明 中 发 挥 重 要 的 作 用 , 我 们 先 来 瞅 一 瞅 Jensen不等式将在之后的EM算法的证明中发挥重要的作用,我们先来瞅一瞅 JensenEM


Jensen不等式

假 设 f 为 凸 函 数 , X 是 一 个 随 机 变 量 假设f为凸函数,X是一个随机变量 fX
则 有 则有
E [ f ( X ) ] ≥ f [ E ( X ) ] E[f(X)] \ge f[E(X)] E[f(X)]f[E(X)]
进 一 步 地 , 若 f 是 严 格 凸 函 数 , 则 : 进一步地,若f是严格凸函数,则: f
E [ f ( X ) ] > f [ E ( X ) ] E[f(X)] \gt f[E(X)] E[f(X)]>f[E(X)]
E [ f ( X ) ] = f [ E ( X ) ] 成 立 的 条 件 是 P ( X = E [ X ] ) = 1 E[f(X)] = f[E(X)]成立的条件是P(X=E[X])=1 E[f(X)]=f[E(X)]P(X=E[X])=1


证明:
我 们 采 用 数 学 归 纳 法 : 我们采用数学归纳法: :
f ( ∑ k = 1 n a k x k ) ≤ ∑ k = 1 n a k f ( x k ) f\left( \sum_{k=1}^{n}a_{k}x_{k} \right) \le \sum^{n}_{k=1}a_{k}f(x_k) f(k=1nakxk)k=1nakf(xk)

当 n = 1 时 当n=1时 n=1
有 a 1 = 1 , 因 此 f ( a 1 x 1 ) ≤ a 1 f ( x 1 ) 显 然 成 立 有a_{1}=1,因此{\color{green}f(a_{1}x_{1})\le a_{1}f(x_1)}显然成立 a1=1f(a1x1)a1f(x1)

递 归 步 , 假 设 n = k − 1 ( k ≥ 2 ) 时 不 等 式 成 立 递归步,假设n=k-1(k\ge 2)时不等式成立 n=k1(k2)
有 : 有: :
f ( ∑ k = 1 n − 1 a k x k ) ≤ ∑ k = 1 n − 1 a k f ( x k ) f\left( \sum_{k=1}^{n-1}a_{k}x_{k} \right) \le \sum^{n-1}_{k=1}a_{k}f(x_k) f(k=1n1akxk)k=1n1akf(xk)

只 需 要 证 n = k 成 立 只需要证n=k成立 n=k
f ( ∑ k = 1 n a k x k ) = f ( a n x n + ( 1 − a n ) ∑ k = 1 n − 1 a k 1 − a n x k ) ( 1 ) f\left( \sum_{k=1}^{n}a_{k}x_{k} \right)= f\left( a_{n}x_{n} + (1-a_{n})\sum_{k=1}^{n-1}\frac{a_{k}}{1-a_{n}}x_{k} \right) \quad (1) f(k=1nakxk)=f(anxn+(1an)k=1n11anakxk)(1)
上 式 将 第 n 项 拎 出 , 同 时 将 ( 1 − a n ) 提 出 来 , 仅 是 恒 等 变 换 而 已 上式将第n项拎出,同时将(1-a_n)提出来,仅是恒等变换而已 n(1an)
你 问 我 为 何 要 做 此 恒 等 变 换 , 可 以 想 象 凸 函 数 的 定 义 : 你问我为何要做此恒等变换,可以想象凸函数的定义: :

I 是 定 义 在 凸 集 C 上 地 某 个 区 间 , 设 f 是 定 义 在 区 间 I 上 的 函 数 , 若 在 I 上 的 任 意 两 点 x 1 , x 2 和 任 意 的 实 数 λ ∈ ( 0 , 1 ) , 总 有 I是定义在凸集C上地某个区间,设f是定义在区间I上的函数,若在I上的任意两点x_{1}, x_{2}和任意的实数\lambda \in (0, 1),总有 ICfIIx1,x2λ(0,1)
f ( λ x 1 + ( 1 − λ ) x 2 ) ≤ λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) f\left (\lambda x_{1} + (1-\lambda)x_2\right ) \le \lambda f(x_1) + (1- \lambda)f(x_2) f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2)
则 称 f 为 I 上 的 凸 函 数 , 若 将 定 义 中 的 ≤ 换 成 < 也 成 立 , 对 应 可 称 函 数 f 为 对 应 区 间 上 的 严 格 凸 函 数 则称f为I上的凸函数,若将定义中的\le 换成 \lt 也成立,对应可称函数f为对应区间上的严格凸函数 fI<f

所 以 ( 1 ) 式 , 即 是 为 了 配 凑 λ 和 ( 1 − λ ) , 我 们 配 凑 是 有 目 的 的 , 目 的 是 为 了 将 λ 和 ( 1 − λ ) 提 出 : 所以(1)式,即是为了配凑\lambda 和 (1-\lambda),我们配凑是有目的的,目的是为了将\lambda 和 (1-\lambda)提出: (1)λ(1λ)λ(1λ)

f ( ∑ k = 1 n a k x k ) = f ( a n x n + ( 1 − a n ) ∑ k = 1 n − 1 a k 1 − a n x k ) ≤ a n f ( x n ) + ( 1 − a n ) f ( ∑ k = 1 n − 1 a k 1 − a n x k ) ( 2 ) \begin{aligned} f\left( \sum_{k=1}^{n}a_{k}x_{k} \right) &= f\left( a_{n}x_{n} + (1-a_{n})\sum_{k=1}^{n-1}\frac{a_{k}}{1-a_{n}}x_{k} \right) \\ &\le a_{n}f\left(x_{n}\right) + (1-a_{n}) f\left( \sum_{k=1}^{n-1}\frac{a_{k}}{1-a_{n}}x_{k} \right) \end{aligned} \quad (2) f(k=1nakxk)=f(anxn+(1an)k=1n11anakxk)anf(xn)+(1an)f(k=1n11anakxk)(2)

接 下 来 , 我 们 用 下 , 之 前 n = k − 1 时 , 假 设 的 条 件 即 可 , 即 : 接下来,我们用下,之前n=k-1时, 假设的条件即可,即: n=k1,
f ( ∑ k = 1 n − 1 a k 1 − a n x k ) ≤ ∑ k = 1 n − 1 a k 1 − a n f ( x k ) ( 3 ) f\left( \sum_{k=1}^{n-1} {\color{blue}\frac{a_{k}}{1-a_n}} x_{k} \right) \le \sum^{n-1}_{k=1} {\color{blue}\frac{a_{k}}{1-a_n}} f(x_k) \quad (3) f(k=1n11anakxk)k=1n11anakf(xk)(3)
将 ( 3 ) 带 入 ( 2 ) 式 中 , 并 将 公 因 式 ( 1 − a n ) 乘 入 : 将(3)带入(2)式中,并将公因式(1-a_n)乘入: (3)(2)(1an):

f ( ∑ k = 1 n a k x k ) = f ( a n x n + ( 1 − a n ) ∑ k = 1 n − 1 a k 1 − a n x k ) ≤ a n f ( x n ) + ( 1 − a n ) f ( ∑ k = 1 n − 1 a k 1 − a n x k ) ≤ a n f ( x n ) + ( 1 − a n ) ∑ k = 1 n − 1 a k 1 − a n f ( x k ) ≤ a n f ( x n ) + ∑ k = 1 n − 1 a k f ( x k ) ≤ ∑ k = 1 n a k f ( x k ) \begin{aligned} f\left( \sum_{k=1}^{n}a_{k}x_{k} \right) &= f\left( a_{n}x_{n} + (1-a_{n})\sum_{k=1}^{n-1}\frac{a_{k}}{1-a_{n}}x_{k} \right) \\ &\le a_{n}f\left(x_{n}\right) + (1-a_{n}) f\left( \sum_{k=1}^{n-1}\frac{a_{k}}{1-a_{n}}x_{k} \right) \\ &\le a_{n}f\left(x_{n}\right) + (1-a_{n}) \sum^{n-1}_{k=1} {\color{blue}\frac{a_{k}}{1-a_n}} f(x_k)\\ &\le a_{n}f\left(x_{n}\right) + \sum^{n-1}_{k=1} a_{k} f(x_k)\\ &\le \sum^{n}_{k=1}a_{k}f(x_k) \end{aligned} f(k=1nakxk)=f(anxn+(1an)k=1n11anakxk)anf(xn)+(1an)f(k=1n11anakxk)anf(xn)+(1an)k=1n11anakf(xk)anf(xn)+k=1n1akf(xk)k=1nakf(xk)
所 以 , n = k ( k ≥ 2 ) 时 , 不 等 式 也 成 立 所以,n=k(k\ge 2)时,不等式也成立 n=k(k2)
证毕

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值