【数理统计02】延森Jensen‘s不等式的证明

延森不等式(Jensen’s Inequality)是凸函数理论中的一个重要结果,广泛应用于概率论、统计学和优化理论等领域。这个不等式的基本形式是:

对于一个凸函数 f f f和一个随机变量 X X X,如果 E [ X ] \mathbb{E}[X] E[X]存在,那么有:
f ( E [ X ] ) ≤ E [ f ( X ) ] f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)] f(E[X])E[f(X)]

证明这个不等式的一般步骤如下:

  1. 凸函数的定义
    函数 f : R → R f: \mathbb{R} \rightarrow \mathbb{R} f:RR是凸函数,当且仅当对于任意的 x 1 , x 2 ∈ R x_1, x_2 \in \mathbb{R} x1,x2R λ ∈ [ 0 , 1 ] \lambda \in [0, 1] λ[0,1],有:
    f ( λ x 1 + ( 1 − λ ) x 2 ) ≤ λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) f(\lambda x_1 + (1 - \lambda) x_2) \leq \lambda f(x_1) + (1 - \lambda) f(x_2) f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2)

  2. 证明步骤

    • 步骤1:利用凸函数的定义,我们首先对于简单情形 λ = 1 2 \lambda = \frac{1}{2} λ=21给出不等式。

    • 步骤2:将凸函数定义扩展到一般情况,对于任意的有限个数 x i x_i xi和权重 λ i \lambda_i λi(权重非负且和为1),有:
      f ( ∑ i = 1 n λ i x i ) ≤ ∑ i = 1 n λ i f ( x i ) f\left( \sum_{i=1}^n \lambda_i x_i \right) \leq \sum_{i=1}^n \lambda_i f(x_i) f(i=1nλixi)i=1nλif(xi)

    • 步骤3:利用这一步骤得到的结果,证明对任意随机变量 X X X和其概率分布的期望的情形。

详细证明

步骤1:首先考虑两个点的情况,设 x 1 x_1 x1 x 2 x_2 x2是实数, λ ∈ [ 0 , 1 ] \lambda \in [0, 1] λ[0,1]。根据凸函数的定义,有:
f ( λ x 1 + ( 1 − λ ) x 2 ) ≤ λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) f(\lambda x_1 + (1 - \lambda) x_2) \leq \lambda f(x_1) + (1 - \lambda) f(x_2) f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2)

步骤2:将这个不等式扩展到有限个点的情况。设 x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn是实数, λ 1 , λ 2 , … , λ n \lambda_1, \lambda_2, \ldots, \lambda_n λ1,λ2,,λn是非负权重,且 ∑ i = 1 n λ i = 1 \sum_{i=1}^n \lambda_i = 1 i=1nλi=1。利用凸函数的定义,可以通过数学归纳法证明:
f ( ∑ i = 1 n λ i x i ) ≤ ∑ i = 1 n λ i f ( x i ) f\left( \sum_{i=1}^n \lambda_i x_i \right) \leq \sum_{i=1}^n \lambda_i f(x_i) f(i=1nλixi)i=1nλif(xi)

步骤3:考虑随机变量 X X X和凸函数 f f f,对于离散情形,我们可以写成:
X = x i with probability p i X = x_i \quad \text{with probability} \quad p_i X=xiwith probabilitypi
这里 ∑ i p i = 1 \sum_i p_i = 1 ipi=1

因此:
E [ X ] = ∑ i p i x i \mathbb{E}[X] = \sum_i p_i x_i E[X]=ipixi
E [ f ( X ) ] = ∑ i p i f ( x i ) \mathbb{E}[f(X)] = \sum_i p_i f(x_i) E[f(X)]=ipif(xi)

根据步骤2的结果,有:
f ( ∑ i p i x i ) ≤ ∑ i p i f ( x i ) f\left( \sum_i p_i x_i \right) \leq \sum_i p_i f(x_i) f(ipixi)ipif(xi)

即:
f ( E [ X ] ) ≤ E [ f ( X ) ] f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)] f(E[X])E[f(X)]

对于连续情形,可以通过类似的方法,考虑连续随机变量的概率密度函数,使用积分形式得到同样的结果。具体地,可以考虑随机变量的积分表示:

X X X是一个连续随机变量,其概率密度函数为 p ( x ) p(x) p(x),则:
E [ X ] = ∫ x p ( x )   d x \mathbb{E}[X] = \int x p(x) \, dx E[X]=xp(x)dx
E [ f ( X ) ] = ∫ f ( x ) p ( x )   d x \mathbb{E}[f(X)] = \int f(x) p(x) \, dx E[f(X)]=f(x)p(x)dx

根据凸函数定义的积分形式,也可以证明:
f ( ∫ x p ( x )   d x ) ≤ ∫ f ( x ) p ( x )   d x f\left( \int x p(x) \, dx \right) \leq \int f(x) p(x) \, dx f(xp(x)dx)f(x)p(x)dx

因此,对于连续随机变量同样有:
f ( E [ X ] ) ≤ E [ f ( X ) ] f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)] f(E[X])E[f(X)]

综上所述,延森不等式对于离散和连续情形都成立。

  • 15
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值