AI3043 Bayesian Networks

本文要求解决关于给定贝叶斯网络的问题,包括使用VariableElimination方法计算联合分布P(R,L,Q,T,S),以及特定条件下概率的求解,如游客多的概率和晴天且有很多人拍Quokka自拍时Quokkas快乐的概率。
摘要由CSDN通过智能技术生成


2023-24 Second Semester AI3043 Bayesian Networks
Assignment 2 Exact Inference: Variable Elimination
Due Date: 17/Apr/2024(Wed), before 11:59am, submitted to iSpace
Consider the following Bayesian networks:
• R: it is raining or not, with binary values r: it is raining and r
c
: it is not raining. val(R) = {r, rc}
• L: there are juicy leaves or not, val(L) = {l, lc}
• Q: the quokkas are happy or unhappy, val(Q) = {q, qc}
• T: there are lots of tourist or not many, val(T) = {t, tc}
• S: people are taking lots of quokka selfies, or not. val(R) = {s, sc}
Figure 1: Bayesian network
1. Write the chain rule for the joint distribution P (R, L, Q, T, S)
P (R, L, Q, T, S) = P (R) P (L | R) P (Q | R, L) P (T | R, L, Q) P (S | R, L, Q, T)
Note: You must use VE (variable elimination) method to solve these questions below!
2. What is the probability that there are many tourists?3. What is the probability that the quokkas are happy, given there are lots of quokka selfies being taken and itis not raining.4. Calculate P (r |
WX:codinghelp



 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值