http://acm.hdu.edu.cn/showproblem.php?pid=4196
题目大意:
给你一个数字n,求不大于n能组成的最大的完全平方数。
解题思路:
完全平方数可以拆成不同的偶数个质数相乘,算出n!拆出来的各素数个数,奇数的就舍去一个,偶数的全要,然后再全部乘起来,快速求幂即可。
拆分求素数个数时,先求包含一个prime的数的个数为n/prime,然后n/=prime,就可以再求出包含2个prime的个数为n(新)/prime,以此类推,即可求出素数个数。
代码如下:
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn = 1e7 + 11;
const ll MOD = 1e9 + 7;
int vis[maxn];
int primes[maxn / 10],pcnt;
void get_primes(int n){
vis[1] = 1;
for(int i = 2;i <= n;i++){
if(!vis[i]) primes[++pcnt] = i;
for(int j = 1;j <= pcnt;j++){
int t = primes[j];
if(t * i > n) break;
vis[i * t] = 1;
if(i % t == 0) break;
}
}
}
ll q_pow(ll x, ll k){
ll ret = 1;
while(k > 0){
if(k & 1) ret = ret * x % MOD;
x = x * x % MOD;
k >>= 1;
}
return ret;
}
ll n;
int main()
{
get_primes(maxn - 10);
while(~scanf("%lld",&n) && n){
ll tmp = 1;ll cnt = 0;
ll ans = 1;
for(int i = 1;i <= pcnt;i++){
if(primes[i] * 2 > n) break;
tmp = primes[i];cnt = 0;
while(tmp <= n) {cnt += n / tmp;tmp *= primes[i];}
if(cnt & 1) cnt--;
ans = ans * q_pow(primes[i],cnt) % MOD;
}
printf("%lld\n",ans);
}
return 0;
}