UVA12396/HDU4196 Remoteland 素数拆分+快速求幂

58 篇文章 1 订阅
46 篇文章 0 订阅

http://acm.hdu.edu.cn/showproblem.php?pid=4196

题目大意:

给你一个数字n,求不大于n能组成的最大的完全平方数。

解题思路:

完全平方数可以拆成不同的偶数个质数相乘,算出n!拆出来的各素数个数,奇数的就舍去一个,偶数的全要,然后再全部乘起来,快速求幂即可。

拆分求素数个数时,先求包含一个prime的数的个数为n/prime,然后n/=prime,就可以再求出包含2个prime的个数为n(新)/prime,以此类推,即可求出素数个数。

代码如下:

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn = 1e7 + 11;
const ll MOD = 1e9 + 7;
int vis[maxn];
int primes[maxn / 10],pcnt;
void get_primes(int n){
	vis[1] = 1;
	for(int i = 2;i <= n;i++){
		if(!vis[i]) primes[++pcnt] = i;
		for(int j = 1;j <= pcnt;j++){
			int t = primes[j];
			if(t * i > n) break;
			vis[i * t] = 1;
			if(i % t == 0) break;
		}
	}
}
ll q_pow(ll x, ll k){
	ll ret = 1;
	while(k > 0){
		if(k & 1) ret = ret * x % MOD;
		x = x * x % MOD;
		k >>= 1;
	}
	return ret;
}
ll n;
int main()
{
	get_primes(maxn - 10);
	while(~scanf("%lld",&n) && n){
		ll tmp = 1;ll cnt = 0;
		ll ans = 1;
		for(int i = 1;i <= pcnt;i++){
			if(primes[i] * 2 > n) break;
			tmp = primes[i];cnt = 0;
			while(tmp <= n) {cnt += n / tmp;tmp *= primes[i];}
			if(cnt & 1) cnt--;
			ans = ans * q_pow(primes[i],cnt) % MOD;
		}
		printf("%lld\n",ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值