噪声标签1:Co-learning: Learning from Noisy Labels with Self-supervision

该博客介绍了Co-learning方法,它在有噪声标签的情况下,结合自监督任务与有监督任务进行协同训练。通过弱增强和强增强数据,以及MixUP技术防止过拟合,同时应用结构一致性约束来保持任务间的一致性。作者提到这种方法与Co-teaching系列方法的不同在于使用单一网络,并通过信息最大化的结构约束来提高网络稳健性。此外,还对比了Co-learning与CoMatch的区别,CoMatch侧重于在半监督场景下通过Memory Bank和图对比学习提高性能。
摘要由CSDN通过智能技术生成

前言

Co-learning: Learning from Noisy Labels with Self-supervision
发表信息:ACM MM 2021
Paper:https://arxiv.org/abs/2108.04063
Code:无

一、核心思想

核心思想:在co-teaching的基础上,通过结合自监督任务和原有有监督任务协同训练。
损失:损失分成三个部分,分别是有监督交叉熵损失,自监督的infoNCE损失和多任务的结构一致性损失。
 One encoder,Two heads!
实现细节:

  • 三个增广:weak Aug 用于有监督损失,two strong Aug 用于自监督对比损失
  • MixUP:由于自监督学习部分需要较长时间收敛,引入mixup延缓有监督分类头对噪声标签的过拟合

在这里插入图片描述
结构相似度约束
和之前的方法不同,这里舍去了co-teaching系列方法中的交替更新和多网络协同学习,仅使用一个encoder,通过约束自监督和有监督两个任务的信息最大化来保证网络的稳健。这里的maximize the agreement实现为两个任务得到的表示应该存在结构约束。

学习邻居一致性是一种用于处理噪声标签的方法。在现实中,数据集中的标签常常会受到一些错误或噪声的影响,这会对模型的训练和泛化能力造成不利影响。而学习邻居一致性则通过考虑样本的邻居关系来进一步提高模型的鲁棒性。 学习邻居一致性方法的核心思想是基于数据的局部性原理,即相似的样本倾向于具有相似的标签。该方法通过比较样本的标签,检测和修复噪声标签,并将不确定性信息引入模型训练过程中。 具体而言,学习邻居一致性方法会首先构建一个样本的邻居图,其中每个样本的邻居是根据特征相似性确定的。然后,该方法会使用邻居信息来计算每个样本的标签一致性得分。通过比较样本自身的标签和邻居的标签,可以有效地检测和纠正噪声标签。 在模型的训练过程中,学习邻居一致性方法会引入一个邻居一致性损失函数,用于最大化样本与其邻居的标签一致性得分。这样,模型会倾向于对邻居们的标签一致性进行学习,从而提高模型的鲁棒性和泛化能力。 总而言之,学习邻居一致性方法通过考虑样本的邻居关系来处理噪声标签。它通过检测和修正噪声标签,引入不确定性信息,并最大化标签一致性得分来提高模型的鲁棒性。这种方法在处理噪声标签方面具有一定的优势,并可在实际应用中取得良好的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值