CV Code|计算机视觉开源周报20200601期

本周谷歌推出DetectoRS目标检测算法,刷新COCO数据集精度记录,同时开源视频质量评价数据集UGC-VQA。京东发布FastReID,成为最强ReID工具箱,港中文MMLab提出跨域ReID技术。此外,文章还涵盖了图像去噪、医学影像处理、人机交互、图像超分辨率和视频质量评估等多个领域的最新进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

六月的第一周马上就要过去了,又到了我们盘点开源代码的时候。

谷歌发布的目标检测新算法DetectoRS刷新了沉寂将近一年的COCO数据集的最高精度,是这周最具影响力的工作,同时谷歌还开源了视频质量评价的基准测试数据集UGC-VQA,相信对做相关工作的朋友都会很有价值。

目标重识别领域,京东的FastReID和港中文MMlab提出的跨域ReID都很值得关注。

   图像去噪

[1].CNN Denoisers As Non-Local Filters: The Neural Tangent Denoiser

CNN可用于图像的恢复,近来被发现它天然的具有对图像数据的恢复能力,比如从一幅污损的图像中让CNN网络学习去重建它,CNN首先学习重建一幅没有污损的图像。这很有意思,貌似CNN天然知道自然图像是什么样的?

该文作者研究CNN去噪与非局部滤波这种传统算法的关系,又有了一些新发现。

作者 | Julián Tachella, Junqi Tang, Mike Davies

单位 | 爱丁堡大学

论文 | https://arxiv.org/abs/2006.02379

代码 | https://gitlab.com/Tachella/neural_tangent_denoiser

   医学影响处理识别

#脑外伤二维图像分割#

[2].A Comparative Study of 2D Image Segmentation Algorithms for Traumatic Brain Lesions Using CT Data from the ProTECTIII Multicenter Clinical Trial 

从ProTECTIII Multicenter 临床试验的CT数据中比较研究脑外伤二维图像分割算法

图像分割可以方便实现对医学影像中感兴趣的区域的可视化和量化,因为医学图像的复杂性,其仍然是一项艰巨的任务。

脑外伤后人脑出现的病变包括:硬膜内出血(IPH)、硬膜下血肿(SDH)、硬膜外血肿(EDH)和创伤性挫伤等,本文旨在使用图像分割的方法进行病情的评估。

实验表明在这个问题上 UNet++ 2D + Focal Tversky 损失函数比 UNet 2D + Binary Cross-Entropy 取得了更高的精度。

作者 | Shruti Jadon, Owen P. Leary, Ian Pan, Tyler J. Harder, David W. Wright, Lisa H. Merck, Derek L. Merck

单位 | 布朗大学沃伦阿尔伯特医学院;埃默里大学医学院;佛罗里达大学医学院;布朗大学

论文 | https://arxiv.org/abs/2006.01263

代码 | https://github.com/shruti-jadon/Traumatic-Brain-Lesions-Segmentation

#弱监督病变定位#

[3].Weakly Supervised Lesion Localization With Probabilistic-CAM Pooling

作者 | Wenwu Ye, Jin Yao, Hui Xue, Yi Li

单位 | JF Healthcare(九峰医疗);Greybird Ventures LLC

论文 | https://arxiv.org/a

### 车辆违停区域标注数据集及相关资源 为了实现车辆违停区域的检测,需要依赖高质量的标注数据集来训练计算机视觉模型。以下是几个可能适用的数据集和相关资源: #### 1. **KITTI Vision Benchmark** 该数据集提供了丰富的交通场景信息,包括车辆、行人和其他常见目标的标注[^2]。虽然 KITTI 主要关注自动驾驶领域中的物体检测和跟踪任务,但它可以作为初步研究的基础。如果需要特定的违停区域标注,则可以通过二次标注的方式扩展。 #### 2. **Foggy Driving Dataset** 此数据集中包含大量真实的雾天驾驶场景图片,并附有详细的语义分割和对象检测注释[^3]。尽管它的主要应用场景是在恶劣天气条件下的驾驶辅助系统开发,但其中涉及的道路结构和车辆位置信息也可以间接支持违停区域的研究。 #### 3. **自定义标注工具与方法** 对于更加精确的需求,建议利用现有的开源框架自行构建适合的任务专用型数据集。例如,在YOLO系列算法中提到的技术路线可用于快速搭建针对特殊环境(如停车场或城市街道)下车辆停放状态分析所需的样本库[^4]。具体来说,可以选择合适的卷积神经网络架构提取特征并向量化表达形式转换后再做进一步优化调整直至满足预效果为止。 此外,《CV Code|计算机视觉开源周报》也经常报道最新的研究成果和技术进展,其中包括许多关于Sim-to-Real迁移学习方面的论文资料可供参考学习[^5]。这类技术允许我们将模拟环境中生成的人工合成图像转化为接近实际拍摄条件下表现出来的鸟瞰视角效果图件从而减少实地采集成本同时也提高了泛化能力适应更多复杂情况变化挑战等问题解决办法之一就是采用这种思路来进行项目实施过程当中的各个环节把控工作落实到位才能取得理想成果展现出来给大家看哦! ```python import cv2 from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense def create_cnn_model(input_shape): model = Sequential() # 添加第一个卷积层 model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape)) model.add(MaxPooling2D(pool_size=(2, 2))) # 第二个卷积层 model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) # 展平层 model.add(Flatten()) # 全连接层 model.add(Dense(128, activation='relu')) model.add(Dense(1, activation='sigmoid')) # 输出层 return model ``` 以上代码片段展示了一个简单的 CNN 架构实例,适用于入门级别的图像分类任务。可以根据实际情况修改参数设置以适配不同的业务需求。 --- 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值