六月的第一周马上就要过去了,又到了我们盘点开源代码的时候。
谷歌发布的目标检测新算法DetectoRS刷新了沉寂将近一年的COCO数据集的最高精度,是这周最具影响力的工作,同时谷歌还开源了视频质量评价的基准测试数据集UGC-VQA,相信对做相关工作的朋友都会很有价值。
目标重识别领域,京东的FastReID和港中文MMlab提出的跨域ReID都很值得关注。
图像去噪
[1].CNN Denoisers As Non-Local Filters: The Neural Tangent Denoiser
CNN可用于图像的恢复,近来被发现它天然的具有对图像数据的恢复能力,比如从一幅污损的图像中让CNN网络学习去重建它,CNN首先学习重建一幅没有污损的图像。这很有意思,貌似CNN天然知道自然图像是什么样的?
该文作者研究CNN去噪与非局部滤波这种传统算法的关系,又有了一些新发现。
作者 | Julián Tachella, Junqi Tang, Mike Davies
单位 | 爱丁堡大学
论文 | https://arxiv.org/abs/2006.02379
代码 | https://gitlab.com/Tachella/neural_tangent_denoiser
医学影响处理识别
#脑外伤二维图像分割#
[2].A Comparative Study of 2D Image Segmentation Algorithms for Traumatic Brain Lesions Using CT Data from the ProTECTIII Multicenter Clinical Trial
从ProTECTIII Multicenter 临床试验的CT数据中比较研究脑外伤二维图像分割算法
图像分割可以方便实现对医学影像中感兴趣的区域的可视化和量化,因为医学图像的复杂性,其仍然是一项艰巨的任务。
脑外伤后人脑出现的病变包括:硬膜内出血(IPH)、硬膜下血肿(SDH)、硬膜外血肿(EDH)和创伤性挫伤等,本文旨在使用图像分割的方法进行病情的评估。
实验表明在这个问题上 UNet++ 2D + Focal Tversky 损失函数比 UNet 2D + Binary Cross-Entropy 取得了更高的精度。
作者 | Shruti Jadon, Owen P. Leary, Ian Pan, Tyler J. Harder, David W. Wright, Lisa H. Merck, Derek L. Merck
单位 | 布朗大学沃伦阿尔伯特医学院;埃默里大学医学院;佛罗里达大学医学院;布朗大学
论文 | https://arxiv.org/abs/2006.01263
代码 | https://github.com/shruti-jadon/Traumatic-Brain-Lesions-Segmentation
#弱监督病变定位#
[3].Weakly Supervised Lesion Localization With Probabilistic-CAM Pooling
作者 | Wenwu Ye, Jin Yao, Hui Xue, Yi Li
单位 | JF Healthcare(九峰医疗);Greybird Ventures LLC
论文 | https://arxiv.org/a