CV Code|计算机视觉开源周报20200601期

本周谷歌推出DetectoRS目标检测算法,刷新COCO数据集精度记录,同时开源视频质量评价数据集UGC-VQA。京东发布FastReID,成为最强ReID工具箱,港中文MMLab提出跨域ReID技术。此外,文章还涵盖了图像去噪、医学影像处理、人机交互、图像超分辨率和视频质量评估等多个领域的最新进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

六月的第一周马上就要过去了,又到了我们盘点开源代码的时候。

谷歌发布的目标检测新算法DetectoRS刷新了沉寂将近一年的COCO数据集的最高精度,是这周最具影响力的工作,同时谷歌还开源了视频质量评价的基准测试数据集UGC-VQA,相信对做相关工作的朋友都会很有价值。

目标重识别领域,京东的FastReID和港中文MMlab提出的跨域ReID都很值得关注。

   图像去噪

[1].CNN Denoisers As Non-Local Filters: The Neural Tangent Denoiser

CNN可用于图像的恢复,近来被发现它天然的具有对图像数据的恢复能力,比如从一幅污损的图像中让CNN网络学习去重建它,CNN首先学习重建一幅没有污损的图像。这很有意思,貌似CNN天然知道自然图像是什么样的?

该文作者研究CNN去噪与非局部滤波这种传统算法的关系,又有了一些新发现。

作者 | Julián Tachella, Junqi Tang, Mike Davies

单位 | 爱丁堡大学

论文 | https://arxiv.org/abs/2006.02379

代码 | https://gitlab.com/Tachella/neural_tangent_denoiser

   医学影响处理识别

#脑外伤二维图像分割#

[2].A Comparative Study of 2D Image Segmentation Algorithms for Traumatic Brain Lesions Using CT Data from the ProTECTIII Multicenter Clinical Trial 

从ProTECTIII Multicenter 临床试验的CT数据中比较研究脑外伤二维图像分割算法

图像分割可以方便实现对医学影像中感兴趣的区域的可视化和量化,因为医学图像的复杂性,其仍然是一项艰巨的任务。

脑外伤后人脑出现的病变包括:硬膜内出血(IPH)、硬膜下血肿(SDH)、硬膜外血肿(EDH)和创伤性挫伤等,本文旨在使用图像分割的方法进行病情的评估。

实验表明在这个问题上 UNet++ 2D + Focal Tversky 损失函数比 UNet 2D + Binary Cross-Entropy 取得了更高的精度。

作者 | Shruti Jadon, Owen P. Leary, Ian Pan, Tyler J. Harder, David W. Wright, Lisa H. Merck, Derek L. Merck

单位 | 布朗大学沃伦阿尔伯特医学院;埃默里大学医学院;佛罗里达大学医学院;布朗大学

论文 | https://arxiv.org/abs/2006.01263

代码 | https://github.com/shruti-jadon/Traumatic-Brain-Lesions-Segmentation

#弱监督病变定位#

[3].Weakly Supervised Lesion Localization With Probabilistic-CAM Pooling

作者 | Wenwu Ye, Jin Yao, Hui Xue, Yi Li

单位 | JF Healthcare(九峰医疗);Greybird Ventures LLC

论文 | https://arxiv.org/a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值