用 X 光检测新冠肺炎?也许孪生网络+迁移学习是更好的选择!

论文研究表明,在样本有限的情况下,使用孪生网络结合迁移学习能有效提高COVID-19胸部X光影像的检测效果。通过对比多种方法,孪生网络显示出了优秀的分类能力。
摘要由CSDN通过智能技术生成

始于2019年的新冠肺炎仍然肆虐全球,快速低成本检测该疾病成为了医学技术领域最热门的话题,早已有专家发现,核酸+胸部医学影像检测相结合是更可信的检测手段。


胸部X光影像是低成本的检测技术,但深度学习往往需要大量的训练样本,但目前公开可获得的样本不过数千。如何在样本不足的情况下使用深度学习进行检测呢?迁移学习是很不错的选择!但还可以更好吗?


今天公开的一篇论文 COVID-19 detection from scarce chest x-ray image data using deep learning 使用孪生网络在这个少样本学习问题中做了实验,取得了不错的效果。作者已经开源了代码。

论文作者信息:


胸部X光影像示例:


上图中covid为新冠肺炎样本,Viral Pneumonia 为普通肺炎,Normal为正常样本。

作者使用的数据集来自kaggle:

  1. ht

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值