古籍文档图像二值化:基于背景估计和能量最小化的方法

本文介绍了一种基于背景估计和能量最小化的古籍文档图像二值化框架,该方法在ICFHR 2018的手写文档图像二值化竞赛中荣获第一,并在东南亚棕榈叶手稿文档分析任务中获得第二。该框架能有效处理历史古籍的退化现象,提高文本识别的准确性。
摘要由CSDN通过智能技术生成

今日分享一篇论文『An enhanced binarization framework for degraded historical document images』,基于背景估计和能量最小化的古籍文档图像二值化。

详细信息如下:

  • 作者:Wei Xiong, Lei Zhou, Ling Yue, Lirong Li, Song Wang

  • 单位:湖北工业大学电气与电子工程学院;美国南卡罗来纳大学计算机科学与工程系

  • 论文:https://jivp-eurasipjournals.springeropen.com/articles/10.1186/s13640-021-00556-4

  • 项目:https://github.com/beargolden/H-DIBCO-2018

摘要

该工作提出了一种基于背景估计和能量分割的古籍文档图像二值化框架,其核心方法在ICFHR 2018举办的手写文档图像二值化竞赛(H-DIBCO 2018)中位列第一,同时在东南亚棕榈叶手稿文档图像分析任务(挑战A)中取得第二名的成绩。

      01   

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值