LNG:首个基于图的对抗样本检测方法

本文提出了一种新的对抗样本检测方法——Latent Neighborhood Graph(LNG),该方法通过构建输入样本的局部流形并在嵌入空间中自适应聚合信息,有效地检测对抗样本。LNG覆盖了多跳邻居,相比DkNN提供了更丰富的信息,并在对抗样本检测中取得了最先进的性能。
摘要由CSDN通过智能技术生成

关注公众号,发现CV技术之美

020e211c588bd83fc36e0d2c42726e36.png

Adversarial Example Detection Using Latent Neighborhood Graph

论文链接: 

https://openaccess.thecvf.com/content/ICCV2021/papers/Abusnaina_Adversarial_Example_Detection_Using_Latent_Neighborhood_Graph_ICCV_2021_paper.pdf

代码链接:无 

发表会议:ICCV2021

  • Overview

  • Reference Dataset

  • Node Retrieval

  • Edge Estimation

  • Graph Discriminator

Introduction

近年来,深度神经网络被广泛应用于计算机视觉、自然语言处理和语音识别等领域。然而研究表明,深度神经网络很容易受到来自输入的细微干扰的攻击,从而导致模型预测出不正确的输出,这也引起了研究人员对深度神经网络的安全隐患的关注。对抗样本检测作为抵御对抗攻击的手段之一,也得到了研究人员的广泛研究。

相比于对抗训练,对抗样本有无需重训练模型,且可以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值