ECCV 2022 | 无需下游训练,Tip-Adapter大幅提升CLIP图像分类准确率

关注公众号,发现CV技术之美

本文转自机器之心。

本文提出了 Tip-Adapter,一种可以免于训练的将 CLIP 用于下游 few-shot 图像分类的方案。

49ecd26aad8e25717383ef442a17a3fc.png

  • 论文链接:https://arxiv.org/pdf/2207.09519.pdf

  • 代码链接:https://github.com/gaopengcuhk/Tip-Adapter

一.研究背景

对比性图像语言预训练模型(CLIP)在近期展现出了强大的视觉领域迁移能力,可以在一个全新的下游数据集上进行 zero-shot 图像识别。为了进一步提升 CLIP 的迁移性能,现有方法使用了 few-shot 的设置,例如 CoOp 和 CLIP-Adapter,即提供了少量下游数据集的训练数据,使得 CLIP 能够更好的针对不同的视觉场景做出调整。但是,这种额外的训练步骤会带来不小的时间和空间资源开销,一定程度上影响了 CLIP 固有的快速知识迁移能力。因此,我们提出了 Tip-Adapter,一种不需要额外下游训练并且能很大程度提升 CLIP 准确率的 few-shot 图像分类方法。基于此,我们又提出了一种仅需要少量微调就能达到 state-of-the-art 性能的方案:Tip-Adapter-F,实现了效率和性能的最佳折中。如下表 1 所示,Tip-Adapter 不需要任何训练时间,即可以将 CLIP 在 ImageNet 数据集提升 + 1.7% 准确率(Accuracy),而 Tip-Adapter-F 仅需要之前方案十分之一的训练时间(Epochs,Time),就可以实现现有最佳的分类性能。

8b9436d00e4ce8f242d68da2245fdf59.png

表 1:不同方案在 ImageNet 数据集上 16-shot 的图像分类准确率和训练时间的比较

二.研究方法

1.Tip-Adapter

Tip-Adapter 的整体网络结构如下图 1 所示,对于给定的 few-shot 训练数据集和标签,我们借助 CLIP 通过一个非训练的方案来构建一个缓存模型(Cache Model),它存储了来自下游训练数据的分类知识;在测试时,Tip-Adapter 通过将 Cache Model 的预测和原始 CLIP 的预测进行线性加和,来得到更强的最终分类结果。

详细的来说,我们使用 CLIP 预训练好的视觉编码器(Visual Encoder)来提取 few-shot 训练集所有图片的特征,作为 Cache Model 的 Keys;并且将对应的图片标签转化为 one-hot 编码的形式,作为 Cache Model 的 Values。这种 Key-Value Cache Model 的构建方法由于使用的是已经预训练好的 Visual Encoder,所以不需要任何训练开销;并且考虑到 few-shot 训练集中,每一个类别只含有少量的图片(1~16 shots),Cache Model 也几乎不会占用额外的显存开销,参考表一中的 GPU Mem. 指标。

对于一张测试图片,我们首先会利用 CLIP 的 Visual Encoder 来得到它的特征,再将该特征视为 Query 去 Cache Model 中进行下游 few-shot 数据的知识检索。由于 Keys 也是由 CLIP 的 Visual Encoder 提取得倒,因此和测试图片特征 Query 同源,我们可以直接计算它们之间的余弦相似度得倒一个 Key-Query 的邻接矩阵,此矩阵可以看作是每一个对应 Value 的权重。因此,我们可以计算 Values 的加权和来得到该测试图像通过检索 Cache Model 得到的分类预测。除此之外,我们还可以通过将测试图片特征和 CLIP 的 Textual Encoder 文本特征进行匹配,来得到 CLIP 的 zero-shot 预测。通过将两者进行线性加权求和,我们得到了最终的分类预测,该预测既蕴含了 CLIP 预训练的图像语言对比性知识,也结合了下游新数据集的 few-shot 知识,因此可以实现更强的图像分类准确率。

基于 Tip-Adapter 的网络结构,我们可以进一步将 Cache Model 中的 Keys 部分变为学习参数,即可以通过训练来进行更新,该方案为 Tip-Adapter-F。借助已经构建好的 Cache Model,Tip-Adapter-F 仅需要现有 CLIP-Adapter 十分之一的训练回合数和时间,就可以实现更高的性能,如表一所示。

f912817b4a67c252b0f50d2511eb339b.png

图 1:Tip-Adapter 和 Tip-Adapter-F 的网络流程图

2.Tip-Adapter 和现有方案的区别与联系

对比 CLIP-Adapter,如图 2 所示,Tip-Adapter 存储的 Keys 和 Values 其实可以分别对应于 CLIP-Adapter 中 adapter 结构的两个线性层,只不过前者是不需要训练来构建的,后者是随机初始化,然后需要训练来学习最佳的参数。

45956bcb491c4c42e763a4f66e779775.png

图 2:Tip-Adapter 相比于 CLIP-Adapter

对比现有的其他构建 Cache Model 的方案,如图 3 所示,Tip-Adapter 的 Cache Model 可以看作是一种多模态的视觉语言 Cache。因为 CLIP 的 Textual Encoder 输出的特征可以看作是文本的 Key-Value,即相当于测试图片特征作为 Query,分别在视觉和文本的 Cache 中检索知识,相对于现有的仅含视觉 Cache 的方案,Tip-Adapter 能够利用多模态知识得到更强的识别性能。

2fae6fa684abf42da12f3adf9367b943.png

图 3:Tip-Adapter 相比于其他构建 Cache Model 的方案

三.实验结果

1.  在 ImageNet 的分类准确率

图 4 和表 2 比较了 Tip-Adapter、Tip-Adapter-F 和现有各个方案在 1、2、4、8、16 shots 的 few-shot 图像分类准确率;表 3 比较了 16-shot ImageNet 数据集上使用不同 CLIP 的 Visual Encoder 的准确率比较。可见,我们的两种方案都在资源开销很小的情况下,达到了非常卓越的性能。

09522d393ad9be008bb0b39786a6013e.png

3755bb383e1ce9222c72bdc16ee7c57e.png

图 4 和表 2:ImageNet 数据集上不同方法的 1~16-shot 图像分类准确率比较

582477a7a38f19381f86d73c38f6482f.png

表 5:16-shot ImageNet 上不同 CLIP 的 Visual Encoder 的图像分类准确率比较

2.  在另外 10 个图像分类数据集

如图 5 所示,我们提供了另外 10 个图像分类数据集的准确率比较结果,分别是 StandfordCars,UCF101,Caltech101,Flowers102,SUN397,DTD,EuroSAT,FGVCAircraft,OxfordPets 和 Food101。如图所示,我们的 Tip-Adapter-F 均取得了最高的识别准确率。

14e55165731a121122893d39e1c99a59.png

0db07c4ea686ce710eddcaee550ba9d7.png

图 5:另外 10 个数据集上不同方法的 1~16-shot 图像分类准确率比较

3.  领域泛化能力的测评

我们也测试了 Tip-Adapter 和 Tip-Adapter-F 在领域泛化(Domain Generalization)方面的表现。如表 6 所示,我们的两种方案都表现出了很强的鲁棒性以及特征迁移能力。

81812bce8d6e49d4ad2208a0c99c7cc5.png

四.结论

本文提出了 Tip-Adapter,一种可以免于训练的将 CLIP 用于下游 few-shot 图像分类的方案。Tip-Adapter 通过构建一个 Key-Value Cache Model,来作为测试图片 Query 的知识检索库,并通过融合 Cache Model 的预测和 CLIP 的 zero-shot 预测,来得到更强的识别性能。我们期望 Tip-Adapter 可以启发更多预训练模型高效迁移的后续工作。

117bf97decf57bad19124fb68869bf83.jpeg

END

欢迎加入「计算机视觉交流群👇备注:CV

b182d6469ba72731410adf754ffe49cd.png

<think>好的,我需要解释Linux下的grep -v命令。首先,我得确认自己对它的理解是否正确。grep本身是用于搜索文本的工具,而-v选项应该是一个反转匹配的参数。也就是说,它会显示不包含匹配模式的行。 接下来,我应该回忆基本语法,确保格式正确。用户提到的系统级指令要求行内数学表达式用$...$,但这里可能用不上数学公式。不过还是要检查是否需要处理其他格式要求,比如独立成段的公式,但这里可能不涉及。 用户需要结构清晰的回答,所以应该分步骤或分点说明。可能需要包括用途、语法、示例、注意事项等部分。需要确保用中文,并且例子要具体,方便用户理解。 还要注意LaTeX语法是否正确,但在这个问题中可能不需要数学表达式,除非举例时需要特殊符号。不过如果有涉及,比如正则表达式中的符号,可能需要转义或处理,但一般grep的例子可能不需要复杂的LaTeX。 然后,思考常见的用例。比如排除空行,过滤日志中的某些信息。需要举实际例子,比如在文件中查找不包含某个关键词的行,或者结合其他命令如ps aux来排除特定进程。 另外,可能需要提到-v选项的全称是--invert-match,以增强专业性和完整性。同时,注意提示用户该选项可以与其他grep选项组合使用,比如-i(忽略大小写),但需要说明顺序的影响,比如-i放在-v前后的区别。 还要检查是否有常见错误,比如用户可能误用正则表达式导致结果不符,或者忘记引号包裹模式,导致shell解释特殊字符。这时候需要提醒用户正确引用模式。 最后,总结使用场景,强调-v在过滤不需要的内容时的实用性,帮助用户高效处理文本数据。确保语言简洁明了,避免技术术语过于复杂,适合不同层次的用户理解。</think>在 Linux 系统中,`grep -v` 是一个常用的文本过滤命令,其核心功能是**反向匹配**。以下是逐步说明: --- ### 1. **基本用途** - **作用**:从输入中筛选出**不包含**指定模式的行。 - **全称选项**:`--invert-match`(与 `-v` 等效) - **适用场景**:排除不需要的文本行,例如过滤日志中的干扰信息或清理数据。 --- ### 2. **命令语法** ```bash grep -v "模式" 文件名 ``` - `模式`:需排除的文本或正则表达式。 - `文件名`:要操作的目标文件(可省略,表示从标准输入读取)。 --- ### 3. **典型示例** #### 示例 1:排除包含特定关键词的行 ```bash # 查找 /etc/passwd 中不包含 "/bin/bash" 的行 grep -v "/bin/bash" /etc/passwd ``` #### 示例 2:结合管道过滤输出 ```bash # 查看运行中的进程,但排除 "ssh" 相关进程 ps aux | grep -v "ssh" ``` #### 示例 3:排除空行 ```bash # 清理文件中的空行(显示非空行) grep -v "^$" filename.txt ``` --- ### 4. **组合其他选项** `-v` 可与其他 `grep` 选项联合使用: - **忽略大小写**:`grep -vi "pattern"`(`-i` 不区分大小写) - **统计行数**:`grep -vc "pattern"`(`-c` 统计匹配行数) --- ### 5. **注意事项** - **正则表达式**:若模式包含特殊字符(如 `$`, `*`),需用引号包裹。 - **多条件排除**:需结合正则表达式逻辑符,例如: ```bash # 排除包含 "error" 或 "warning" 的行(需转义 |) grep -v "error\|warning" log.txt ``` --- ### 6. **底层原理** `grep -v` 通过逐行扫描输入,标记**不匹配**模式的行并输出。其时间复杂度为 $O(n)$,适合处理大文件。 --- 通过灵活使用 `grep -v`,可以高效清理和筛选文本数据,尤其适合日志分析、配置文件处理等场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值