关注公众号,发现CV技术之美
自2020年伪装目标检测任务被提出后,领域内涌现出多个子任务、榜单性能不断被刷新,2023年的我们如何快速上手伪装场景理解?如何无痛发现最强模型是何方神圣?如何快速抢占下一个论文创新点?小编带你一文知晓伪装场景理解领域最新近况。
今天为大家介绍的这篇论文详述了“伪装场景理解”,作者团队通过对 200多篇相关文献进行全面调研、评测,从它们的性能、优点、缺点、复杂性等进行分析讨论,强调了若干领域挑战,构建了第一个面相应用场景的伪装缺陷分割数据集CDS2K,并提供了多个潜在的研究方向。
论文标题:Advances in Deep Concealed Scene Understanding
综述论文链接:https://arxiv.org/abs/2304.11234
项目地址:https://github.com/DengPingFan/CSU
▌引言
在正式进入文章介绍前,我们先借助一张图片来了解一下什么是“伪装物体”,如下图1中,左图和右图中分别隐藏了七只和六只小鸟,你发现了吗?生物学家把这种现象称为背景匹配伪装,用于表示一个或者多个生物为了防止被发现,尝试将其颜色与周围环境“无缝地”匹配(答案请参见本文末图6)。
图1. 背景匹配伪装示例
总结来说,伪装场景理解(Concealed Scene Understanding, CSU)用于感知具有伪装属性的物体,是一个热门的计算机视觉课题。有关“伪装”的更多信息可以参考2022年刊表于TPAMI的期刊论文SINetV2 [1]:
◆ 论文链接:https://ieeexplore.ieee.org/document/9444794
◆ 中文介绍:https://cg.cs.tsinghua.edu.cn/jittor/news/2021-06-11-00-00-cod/
◆ GitHub项目:https://github.com/GewelsJI/SINet-V2
自2020年来,该领域涌现出多个任务分支和基准数据集,多个SOTA模型不断突破性能上限。在如此蓬勃发展的技术和应用背景下,领域内亟需一