Hervé Jégou, Matthijs Douze, and Cordelia Schmid,ECCV2008,被引用次数:779
阅读时间:2015-04-06~07
文章三大贡献:
- 将bag-of-features理解成voting,并形式化表示match过程;
- 提出Hamming Embedding,在聚类中k值较小时也能保持descriptor的discriminative power;
- 弱几何一致性和几何变换先验过滤掉一些不满足该条件的匹配点。
一、bag-of-features理解成voting
在match阶段,假设已计算出query image的descriptors,接下来:
- sj=0 ,表示初始化时与dataset中图片 xj 的匹配值为0;
- 对query图片中每个descriptor,记为 yi ,对图片 xj 的每个descriptor,记为 xi,j ,有
sj=gj⎛⎝∑i′=1..m′∑i=1..mjf(xi,j,yi′)⎞⎠稍后再解释 gj() ,先当它没有。其中 f(xi,j,yi′) 为描述子匹配函数,如未加权的bag-of-features中, f(xi,j,yi′

本文介绍了ECCV2008论文中的关键概念,包括将bag-of-features视为投票机制,提出了汉明嵌入用于保持描述符的判别力,即使在聚类k值较小的情况下,以及弱几何一致性用于过滤不满足几何变换先验的匹配点。文章通过归一化的匹配函数和汉明距离实现了高效的图像检索,并利用描述子的方向和尺度信息进行几何一致性估计,提高匹配精度。
最低0.47元/天 解锁文章
455

被折叠的 条评论
为什么被折叠?



