dyno——评估拟时序分析方法

A comparison of single-cell trajectory inference methods

需提前安装好docker即可,不需要pull image,在程序运行期间会自动拉取镜像

#安装
devtools::install_github("dynverse/dyno")
 
#检测docker环境是否符合要求
dynwrap::test_docker_installation(detailed = TRUE)
 
library(dyno)
 
#导入seurat对象(将seurat对象提前保存为rds格式)
sdata <- readRDS(file = "RDS.rds")
 
#添加raw counts和normalised expression 
#(seurat的矩阵需要进行行列转换,以使行为细胞,列为基因)
dataset <- wrap_expression(
  counts = t(sdata@assays$RNA@counts %>% as.matrix()),
  expression = t(sdata@assays$RNA@data %>% as.matrix())
)
 
# #添加先验信息,例为细胞id,后期可视化可以根据具体的轨迹推断结果进行调整
# dataset <- add_prior_information(
#   dataset,
#   start_id = "TTTGTTGCAACTCATG.wt"
# )
 
#添加cluster信息,直接用“seurat_clusters”即可
dataset %<>% add_grouping(
  sdata$seurat_clusters
)
 
#通过shiny可交互形式查看评估结果
guidelines <- guidelines_shiny(dataset)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dr. Qingkang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值