A comparison of single-cell trajectory inference methods
需提前安装好docker即可,不需要pull image,在程序运行期间会自动拉取镜像
#安装
devtools::install_github("dynverse/dyno")
#检测docker环境是否符合要求
dynwrap::test_docker_installation(detailed = TRUE)
library(dyno)
#导入seurat对象(将seurat对象提前保存为rds格式)
sdata <- readRDS(file = "RDS.rds")
#添加raw counts和normalised expression
#(seurat的矩阵需要进行行列转换,以使行为细胞,列为基因)
dataset <- wrap_expression(
counts = t(sdata@assays$RNA@counts %>% as.matrix()),
expression = t(sdata@assays$RNA@data %>% as.matrix())
)
# #添加先验信息,例为细胞id,后期可视化可以根据具体的轨迹推断结果进行调整
# dataset <- add_prior_information(
# dataset,
# start_id = "TTTGTTGCAACTCATG.wt"
# )
#添加cluster信息,直接用“seurat_clusters”即可
dataset %<>% add_grouping(
sdata$seurat_clusters
)
#通过shiny可交互形式查看评估结果
guidelines <- guidelines_shiny(dataset)