本文主要解决文本相似度问题,在word2vec, BOW的基础上提出了WMD模型(Word Mover’s Distance),主要思想是将A文档中的每个词,通过最小距离的转移到B文档中对应的词,最终将每个距离相加,作为衡量两个文档的距离。WMD是无超参数的,而且可解释性高。在一些nlp任务中取得了不错效果。
背景介绍:
解决这类问题的常见思路如下:
- 文档最常用的两种表示方式BOW和TF-IDF。但是,这些特性通常不适合文档距离,因为它们经常接近正交性,它们无法捕捉单词之间的距离。
- 特征分解 如LSI Latent Semantic Indexing通过特征值分解求解词袋矩阵得到语义特征空间 生成模型
- 如LDA,尽可能可能将相似词分组为主题,并将文档表示为这些主题的分布 其他,如mSDA,CCG等 Word2Vec Embedding
WMD是基于word2vec的欧式距离来计算文档的距离的。我们首先要知道什么是word2vec。
- word2vec是一种词向量
- Word的相似性来自与周围的word
- 可以直接下载已经与训练好的word2vec词向量
一种训练方式是根据当前词,预测周围的词,数学上的表达即使得给定当前词时,周围词的概率最大,目标函数如下:
可以捕捉到word之间的距离信息,语义相同的word,映射到向量的空间,也是相近的。看一个简单的例子。
1、”king brave man”
2、”queen beautiful woman”
窗口大小为1时,我们有这样的训练数据:
在输入中,周围的单词成为网络的目标,通过训练得到如下结果,语义相相近的词被映射到的区域也是相近的。而且还可以进行简单的语义计算。
king - man + woman =queen
[1,1] - [1,3 ]+ [5,7] =[5,5]
WMD
WMD使用了归一化的BOW。给定例子如下:
- D0: The President greets the press in Chicago
- D1: Obama speaks to the media in lllinois
- D2: The band gave a concert in Japan
- D3: Obama speaks in lllinois
首先需要进行的处理是去除停用词,然后进行bow的归一化如下:
[President ,greets, press, Chicago, Obama, speaks media,lllinois, band ,gave, concert Japan]
- D0: President greets press Chicago [0.25 ,0.25 ,0.25 ,0.25,0,0,…]
- D1: Obama speaks media lllinois [0,…, 0.25 ,0.25 ,0.25 ,0.25 ,0,0,…]
- D2:band gave concert Japan [0,…, 0.25 ,0.25 ,0.25 ,0.25]
- D3: Obama speaks lllinois [0,…, 0.33 ,0.33 ,0.33,0 ,0,…,0]
我们不需要零值,进行去除。
- D0: President greets press Chicago [0.25 ,0.25 ,0.25 ,0.25]
- D1:Obama speaks media lllinois [0.25 ,0.25 ,0.25 ,0.25]
- D2:band gave concert Japan [ 0.25 ,0.25 ,0.25 ,0.25]
- D3: Obama speaks lllinois[0.33 ,0.33 ,0.33,0]
我们寻找每个词对应最相近的词作为该词的距离。如Obama最相近的是President,那么我们将计算他们之间的距离作为这对pair的距离。依次寻找到所有词对应的相近词距离,最终相加作为最终结果。
对于长度不同的例子时,会出现交叉项,如:
那么数学的角度怎么理解呢?先来看一下每个项代表的含义。
目标函数和条件如下:
我们要对
c
(
i
,
j
)
c(i,j)
c(i,j) 进行加权求和,求出最小值。约束条件保证所有转移的权重之和与该词在文档中占的权重值相同。
在WMD的求解过程中存在什么问题呢?
计算两个文档之间的 WMD 距离相当于求解一个大型的线性规划问题,要是用它来做 kNN 就比较耗时了。文章接下来便考虑了 WMD 两个计算比较方便的下界,方便在kNN 的时候做加速,如果当前待检查文档跟中心 query 文档的 WMD 下界已经大到可以确定它不在 ,query 文档的kNN 列表里,那就直接扔掉而不用再花时间求当前文档的 WMD 距离了。
Word Centroid Distance(WCD):
根据三角不等式,文档d和d′之间的质心距离
∣
∣
X
d
−
X
d
′
∣
∣
2
||Xd-Xd'||_2
∣∣Xd−Xd′∣∣2 为其WMD距离的下界(lower bound),WCD算法的复杂度为
O
(
d
p
)
O( dp )
O(dp),WMD用WCD的计算来作为下界。
Relaxed word moving distance (RWMD)
RWMD即去掉了WMD中的一个约束条件,只留下一个约束条件。目标变成如下:
只考虑从文档出发转移到另一个文档的权重总和,不考虑另一个文档词语接收到的权重,那么很明显最优解将会是:
当找到最近的词i(距离j最近)时,权重是
d
i
d_i
di ,距离j次相近和其他相近的权重为0。定义
j
∗
=
a
r
g
m
i
n
j
c
(
i
,
j
)
j^{*}=argmin_{j}c(i,j)
j∗=argminjc(i,j),即词i与另一个文档中距离最小的词j,记为
j
∗
j^{*}
j∗,对于单个词i来说距离为
因此,
T
∗
T^*
T∗必能生成最小损失。计算该解仅需确定
j
∗
=
a
r
g
m
i
n
j
c
(
i
,
j
)
j^{*}=argmin_{j}c(i,j)
j∗=argminjc(i,j) ,可在欧氏word2vec空间中做最近邻搜索。对文档D中的每个词向量
x
i
x_i
xi ,需要找到文档D′中的最相似的词向量
x
j
x_j
xj 。
若移除第一个约束,最近邻搜索过程相反,即对文档D′中的每个词向量
x
j
x_j
xj ,需要找到文档D中的最相似的词向量
x
i
x_i
xi ,令两者分别为
l
1
(
d
,
d
′
)
、
l
2
(
d
,
d
′
)
l_{1}(d,d^{'})、l_{2}(d,d^{'})
l1(d,d′)、l2(d,d′),通过取二者中的最大值,可得到更紧致的下界,称为松弛WMD(Relaxed WMD,RWMD):
从图中我们可以看出WCD作为下界,与WMD的差距还是很大的,RWMD比较接近与WMD但是计算较慢,怎么合理应用这两种算法?
预取和裁剪
最后是如何利用这两个下界做所谓的 prefetch and prune 来为kNN 加速:给定 query 文档\mathbf{d}后,
- 用 WCD 取离它最近的m个文档;
- 计算前k个文档的 WMD;
- 计算剩下文档的 RWMD,如果某个文档的 RWMD 大于 k-NN 列表中第k个文档的 WMD 就扔掉,不然就计算它的 WMD。如果发现在 k-NN 列表中就更新 k-NN 列表,不然也扔掉。
实验:
实验主要比较7种文档表示baseline:,BOW、TFIDF、BM25 Okapi、LSI、LDA、mSDA、CCG 在不同数据上的错误率。
上图中展示在不同数据集上KNN分类的错误率,除了ohsumed中WMD与LSI的错误率持平,WMD在其他的数据集中都是低于其他方法的。
上图展示了相对于原始的WMD,利用下界后的提升速度。
总结与展望:
WMD在文档的相似度计算中确实取得了一定进展,具有如下优点:
- 效果出色:充分利用了word2vec的领域迁移能力
- 无监督:不依赖标注数据,没有冷启动问题
- 模型简单:仅需要词向量的结果作为输入,没有任何超参数
- 可解释性:将问题转化成线性规划,有全局最优解
- 灵活性:可以人为干预词的重要性
缺点:
- BOW,没有保留语序信息
- 不能很好的处理词向量的OOV(Out of vocabulary)问题
- 处理否定词能力偏差
- 处理领域同义词互斥词的能力偏差
在WMD中,向量d的每一位代表词在文本中的词频进行归一化,因此在排除出现次数的影响因素的情况下,不同词对于文本的贡献是一样的。但实际上在一条文本中,不同词的重要性是不一样的,因此我们可以尝试使用tf-idf与bm25进行进一步优化。
5. 参考文献
WMD: http://proceedings.mlr.press/v37/kusnerb15.pdf ↩ 理解WMD算法:
https://supernan1994.github.io/nlp/wmd1.html 文本相似度度量:
https://zhuanlan.zhihu.com/p/76958536
https://www.zhihu.com/question/33952003