基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【二】人脸预处理

前言

基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库)、Caffe(深度学习库)、Dlib(机器学习库)、libfacedetection(人脸检测库)、cudnn(gpu加速库)。
用到了一个开源的深度学习模型:VGG model。
最终的效果是很赞的,识别一张人脸的速度是0.039秒,而且最重要的是:精度高啊!!!
CPU:intel i5-4590
GPU:GTX 980
系统:Win 10
OpenCV版本:3.1(这个无所谓)
Caffe版本:Microsoft caffe (微软编译的Caffe,安装方便,在这里安利一波)
Dlib版本:19.0(也无所谓
CUDA版本:7.5
cudnn版本:4
libfacedetection:6月份之后的(这个有所谓,6月后出了64位版本的)
这个系列纯C++构成,有问题的各位朋同学可以直接在博客下留言,我们互相交流学习。
====================================================================

本篇是该系列的第二篇博客,介绍我如何设计人脸检测与预处理的接口。

思路

人脸检测与预处理作为人脸识别的步骤之一,其质量能够直接影响识别的精度。而如何在保持精度的条件下最大化运行速度也是需要注意的地方。这里我们不使用OpenCV自带的分类器,而使用一个开源的windows平台下的人脸检测库。具体可以看我的这篇博客:
http://blog.csdn.net/mr_curry/article/details/51804072
那么首先,我们先需要检测出人脸。新建FaceDetect.h,FaceRotate.h,FaceProcessing.h,一个FaceDetect.cpp,FaceProcessing.cpp开始编写。(这里假定你已经添加好dlib的属性表了)
注:下面的人脸预处理函数,是IEEE数据库上的一篇论文所述的方法,2011年的
FaceDetect.h:(提供一个总的接口)

#include "facedetect-dll.h"
#include <opencv.hpp>
using namespace cv;
// define 
Mat Facedetect(Mat frame);
//dlib的配置函数 后面几章会讲
void Dlib_Prodefine();

FaceRotate.h:(用于关键点矫正)

#include <dlib/image_processing/frontal_face_detector.h>
#include <dlib/image_processing/render_face_detections.h>
#include <dlib/image_processing.h>
#include <dlib/gui_widgets.h>
#include <dlib/image_io.h>
#include<dlib/opencv/cv_image.h>
#include <dlib/opencv.h>

using namespace dlib;

frontal_face_detector detector = get_frontal_face_detector();
shape_predictor sp;//Already get

FaceProcessing.h:(用于对人脸进行预处理)

#include <opencv2/opencv.hpp>

using namespace std;
using namespace cv;
Mat FaceProcessing(const Mat &img_, double gamma = 0.2, double sigma0 = 1, double sigma1 = -2, double mask = 0, double do_norm = 10);

FaceProcessing.cpp:

#include"FaceProcessing.h"

int gauss(float x[], float y[], int length, float sigma);
Mat gaussianfilter(Mat img, double sigma0, double sigma1, double shift1, double shift2);
Mat FaceProcessing(const Mat &img_, double gamma = 0.2, double sigma0 = 1, double sigma1 = -2, double mask = 0, double do_norm = 10);

//找出矩阵中的最大值或最小值,输入MAX,或MIN
double MatMaxMin(Mat im, String flag = "MAX")
{
    double value = im.ptr<float>(0)[0];
    if (flag == "MAX")
    {
        for (int i = 0; i<im.rows; i++)
            for (int j = 0; j<im.cols; j++)
                if (im.ptr<float>(i)[j]>value)
                    value = im.ptr<float>(i)[j];
        return value;
    }
    else if (flag == "MIN")
    {
        for (int i = 0; i<im.rows; i++)
            for (int j = 0; j<im.cols; j++)
                if (im.ptr<float>(i)[j]<value)
                    value = im.ptr<float>(i)[j];
        return value;
    }
    return -1;
}
//高斯滤波
Mat gaussianfilter(Mat img, double sigma0, double sigma1, double shift1 = 0, double shift2 = 0)
{
    int i, j;
    sigma0 = (float)sigma0;
    sigma1 = (float)sigma1;
    shift1 = (float)shift1;
    shift2 = (float)shift2;
    Mat img2 = img;
    Mat img3 = img;
    Mat  imgResult;

    //将数据存入横向高斯模板中
    int rowLength = (int)(floor(3.0*sigma0 + 0.5 - shift1) - ceil(-3.0*sigma0 - 0.5 - shift1) + 1);
    int rowBegin = (int)ceil(-3.0*sigma0 - 0.5 - shift1);
    float rowArray[30], Gx[30];
    for (i = 0; i < rowLength; i++)
    {
        rowArray[i] = rowBegin + i;
    }
    gauss(rowArray, Gx, rowLength, sigma0);
    Mat kx = Mat(1, rowLength, CV_32F); //转换成mat类型
    float *pData1 = kx.ptr<float>(0);
    for (i = 0; i < rowLength; i++)
    {
        pData1[i] = Gx[i];
    }
    //将数据存入纵向高斯模板中
    int colLength = (int)(floor(3.0*sigma1 + 0.5 - shift2) - ceil(-3.0*sigma1 - 0.5 - shift2) + 1);
    int colBegin = (int)ceil(-3.0*sigma1 - 0.5 - shift2);
    float colArray[30], Gy[30];
    for (i = 0; i<colLength; i++)
    {
        colArray[i] = colBegin + i;
    }
    gauss(colArray, Gy, colLength, sigma1);
    Mat ky = Mat(colLength, 1, CV_32F);
    float *pData2;
    for (i = 0; i < colLength; i++)
    {
        pData2 = ky.ptr<float>(i);
        pData2[0] = Gy[i];
    }
    filter2D(img, img2, img.depth(), kx, Point(-1, -1));
    filter2D(img2, imgResult, img2.depth(), ky, Point(-1, -1));
    return imgResult;

}
//行列卷积
int gauss(float x[], float y[], int length, float sigma)
{
    int i;
    float sum = 0.0;
    for (i = 0; i<length; i++)
    {
        x[i] = exp(-pow(x[i], 2) / (2 * pow(sigma, 2)));
        sum += x[i];
    }
    for (i = 0; i<length; i++)
    {
        y[i] = x[i] / sum;
    }
    return 1;
}


Mat FaceProcessing(const Mat &img_, double gamma , double sigma0 , double sigma1, double mask , double do_norm)
{
    Mat img;
    img_.convertTo(img, CV_32F);
    Mat imT1, imT2;
    int rows = img.rows;
    int cols = img.cols;
    Mat im = img;
    int b = floor(3 * abs(sigma1));//左右扩充边缘的距离
    Mat imtemp(Size(cols + 2 * b, rows + 2 * b), CV_32F, Scalar(0));//保存扩充的图形
    Mat imtemp2(Size(cols, rows), CV_32F, Scalar(0));
    float s = 0.0;
    //Gamma correct input image to increase local contrast in shadowed regions.
    if (gamma == 0)
    {
        double impixeltemp = 0;
        double Max = MatMaxMin(im, "MAX");//等价于max(1,max(max(im)))
        for (int i = 0; i<rows; i++)
            for (int j = 0; j<cols; j++)
            {
                impixeltemp = log(im.ptr<float>(i)[j] + Max / 256);
                im.ptr<float>(i)[j] = impixeltemp;
            }
    }
    else
    {
        for (int i = 0; i<rows; i++)
            for (int j = 0; j<cols; j++)
                im.ptr<float>(i)[j] = pow(im.ptr<float>(i)[j], gamma);
    }
    float *pData1;
    //run prefilter, if any
    if (sigma1)
    {
        double border = 1;
        if (border) //add extend-as-constant image border to reduce 
            //boundary effects
        {
            for (int i = 0; i<rows + 2 * b - 1; i++)
            {
                pData1 = imtemp.ptr<float>(i);
                for (int j = 0; j<cols + 2 * b - 1; j++){
                    //中间
                    if (i >= b&&i<im.rows + b&&j >= b&&j<im.cols + b)
                        pData1[j] = im.ptr<float>(i - b)[j - b];
                    //左上
                    else if (i<b&&j<b)
                        pData1[j] = im.ptr<float>(0)[0];
                    //右上
                    else if (i<b&&j >= im.cols + b&&j<cols + 2 * b)
                        pData1[j] = im.ptr<float>(0)[cols - 1];
                    //左下
                    else if (i >= im.rows + b&&i<rows + 2 * b&&j<b)
                        pData1[j] = im.ptr<float>(rows - 1)[0];
                    //右下
                    else if (i >= im.rows + b&&j >= im.cols + b)
                        pData1[j] = im.ptr<float>(im.rows - 1)[im.cols - 1];
                    //上方
                    else if (i<b&&j >= b&&j<im.cols + b)
                        pData1[j] = im.ptr<float>(0)[j - b];
                    //下方
                    else if (i >= im.rows + b&&j >= b&&j<im.cols + b)
                        pData1[j] = im.ptr<float>(im.rows - 1)[j - b];
                    //左方
                    else if (j<b&&i >= b&&i<im.rows + b)
                        pData1[j] = im.ptr<float>(i - b)[0];
                    //右方
                    else if (j >= im.cols + b&&i >= b&&i<im.rows + b)
                        pData1[j] = im.ptr<float>(i - b)[im.cols - 1];/**/
                }
            }
        }

        else
        {
            if (sigma0>0)
            {
                imT1 = gaussianfilter(imtemp, sigma0, sigma0);
                imT2 = gaussianfilter(imtemp, -sigma1, -sigma1);
                imtemp = imT1 - imT2;
                //imtemp=gaussianfilter(imtemp,sigma0,sigma0)-gaussianfilter(imtemp,-sigma1,-sigma1);
            }
            else
                imtemp = imtemp - gaussianfilter(imtemp, -sigma1, -sigma1);
        }

        if (border)
        {
            //再取回中间部分
            for (int i = 0; i<rows; i++)
            {
                pData1 = im.ptr<float>(i);
                for (int j = 0; j<cols; j++)
                    pData1[j] = imtemp.ptr<float>(i + b)[j + b];
            }
        }
        //  test=im.ptr<float>(19)[19];
    }

    /*
    % Global contrast normalization. Normalizes the spread of output
    % values. The mean is near 0 so we don't bother to subtract
    % it. We use a trimmed robust scatter measure for resistance to
    % outliers such as specularities and image borders that have
    % different values from the main image.  Usually trim is about
    % 10.
    */

    if (do_norm)
    {
        double a = 0.1;
        double trim = abs(do_norm);

        //im = im./mean(mean(abs(im).^a))^(1/a);
        imtemp2 = abs(im);

        //cvPow(&im,&im,a)//为每个元素求pow
        for (int i = 0; i<rows; i++)
        {
            pData1 = imtemp2.ptr<float>(i);//imtemp2为零矩阵
            for (int j = 0; j<cols; j++)
                pData1[j] = pow(imtemp2.ptr<float>(i)[j], a);
        }

        //求平均值s
        s = 0.0;
        for (int i = 0; i<rows; i++)
        {
            pData1 = imtemp2.ptr<float>(i);
            for (int j = 0; j<cols; j++)
                s += imtemp2.ptr<float>(i)[j];
        }
        s /= (im.rows*im.cols);
        double temp = pow(s, 1 / a);
        for (int i = 0; i<rows; i++)
        {
            pData1 = im.ptr<float>(i);
            for (int j = 0; j<cols; j++)
                pData1[j] = pData1[j] / temp;//点除
        }

        //im = im./mean(mean(min(trim,abs(im)).^a))^(1/a);
        imtemp2 = abs(im);
        for (int i = 0; i<rows; i++)
        {
            pData1 = imtemp2.ptr<float>(i);
            for (int j = 0; j<cols; j++)
                if (pData1[j]>trim)
                    pData1[j] = trim;//min(trim,abs(im))
        }
        //cvPow(&im,&im,a);////为每个元素求pow
        for (int i = 0; i<rows; i++)
        {
            pData1 = imtemp2.ptr<float>(i);
            for (int j = 0; j<cols; j++)
                pData1[j] = pow(pData1[j], a);
        }
        //求平均值
        s = 0.0;
        for (int i = 0; i<rows; i++)
        {
            pData1 = imtemp2.ptr<float>(i);
            for (int j = 0; j<cols; j++)
                s += pData1[j];
        }
        s /= (im.rows*im.cols);
        temp = pow(s, 1 / a);//
        for (int i = 0; i<rows; i++)
        {
            pData1 = im.ptr<float>(i);
            for (int j = 0; j<cols; j++)
                pData1[j] = pData1[j] / temp;//点除
        }

        if (do_norm>0)
        {//im = trim*tanh(im/trim);
            for (int i = 0; i<rows; i++)
            {
                pData1 = im.ptr<float>(i);
                for (int j = 0; j<cols; j++)
                    pData1[j] = trim*tanh(pData1[j] / trim);
            }
        }

    }
    //归一化处理
    double Min;
    Min = MatMaxMin(im, "MIN");//找到矩阵的最小值
    for (int i = 0; i<rows; i++)
    {
        pData1 = im.ptr<float>(i);
        for (int j = 0; j<cols; j++)
            pData1[j] += Min;
    }
    //im.convertTo(im, CV_32F, 1.0/255.0);

    normalize(im, im, 0, 255, NORM_MINMAX);
    //normalize(im,im,0,255,NORM_MINMAX);
    /*  for(int i=0;i<rows;i++)
    {
    pData1=im.ptr<float>(i);
    for(int j=0;j<cols;j++)
    pData1[j]*=255;
    }*/
    im.convertTo(im, CV_8UC1);
    return im;
}

FaceDetect.cpp:

#include <FaceDetect.h>
#include <FaceRotate.h>
#include <FaceProcessing.h>
void Dlib_Prodefine()
{
    deserialize("shape_predictor_68_face_landmarks.dat") >> sp;//读入标记点文件
}
Mat Facedetect(Mat frame)//脸是否存在
{
    Mat gray,error;
    cvtColor(frame, gray, CV_BGR2GRAY);
    int * pResults = NULL;
    pResults = facedetect_frontal_tmp((unsigned char*)(gray.ptr(0)), gray.cols, gray.rows, gray.step, 1.2f, 5, 24);
    int peopleNUM = (pResults ? *pResults : 0);

    for (int i = 0; i < peopleNUM; i++)//代表有几张人脸(pResults ? *pResults : 0)
    {
        short * p = ((short*)(pResults + 1)) + 6 * i;
        Rect opencvRect(p[0], p[1], p[2], p[3]);
        //gray = gray(opencvRect);
        dlib::rectangle dlibRect((long)opencvRect.tl().x, (long)opencvRect.tl().y, (long)opencvRect.br().x - 1, (long)opencvRect.br().y - 1);
        dlib::full_object_detection shape = sp(dlib::cv_image<uchar>(gray), dlibRect);//标记点
        std::vector<full_object_detection> shapes;
        shapes.push_back(shape);//把点保存在了shape中
        dlib::array<array2d<rgb_pixel>>  face_chips;
        extract_image_chips(dlib::cv_image<uchar>(gray), get_face_chip_details(shapes), face_chips);
        Mat pic = toMat(face_chips[0]);
        cvtColor(pic, pic, CV_BGR2GRAY);
        resize(pic, pic, Size(224, 224));
        return FaceProcessing(pic);
    }
    return error;//如果没有检测出人脸 将返回一个空矩阵
}

在上述代码中,关于dlib的array2d< rgb_pixel >类型与Mat类型的转换可以在这里进行体现:

dlib::array<array2d<rgb_pixel>>  face_chips;
        extract_image_chips(dlib::cv_image<uchar>(gray), get_face_chip_details(shapes), face_chips);
        Mat pic = toMat(face_chips[0]);

其中face_chips[0]即为一个array2d< rgb_pixel >的类型,可以通过toMat函数进行转换。
将Mat类型转换为array2d< rgb_pixel >则可以用:

Mat gray;
dlib::cv_image<uchar>(gray);

在这个地方,我们特别需要注意,还要转换一次灰度:

cvtColor(pic, pic, CV_BGR2GRAY);
        resize(pic, pic, Size(224, 224));
        return FaceProcessing(pic);

为什么?因为在测试过程中我发现,dlib函数中的toMat函数返回的不是CV_BGR2GRAY(OpenCV中的灰度图像类型),如果这里你不加,那么这个预处理将会只卷积左半部分脸。
我们可以看看识别的效果。调用FaceDetect()函数接口:

Dlib_Prodefine();
    //Caffe_Prodefine();
    Mat lena = imread("lena.jpg");
    imshow("Face Detect", Facedetect(lena));
    waitKey(0);

当然,这个地方,在进行检测之前,我们最好还是先判断FaceDetect(lena)是否为空,再进行Imshow.
检测与处理图片效果显示:
这里写图片描述
为什么要把图片最后转换为224*224的尺寸?因为:Vgg网络模型接收的就是224*224的尺寸,后面还会讲这个东西。

发布了19 篇原创文章 · 获赞 133 · 访问量 28万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 精致技术 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览