
gnn
文章平均质量分 97
村头陶员外
B站,小红书,抖音等平台搜索 “Forrest的数据科学站”
展开
-
论文分享-->GNN-->Graph Attention network
本次要总结分享的论文:论文链接:Graph Attention network(GAT)来源会议:ICLR 2018作者:Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Yoshua Bengio参考代码:GAT-CODE本篇论文的核心内容其实很简单,就是将 NLP领域的 注意力机制 延用到不规则的 图结构上,使得节点在聚合其邻居节点信息时,能自适应的分配不同邻居不同权重。实验显示取得了不错的效果。本论文是GNN领域内重要的一篇论文,原创 2021-05-16 18:46:08 · 898 阅读 · 0 评论 -
论文分享-->GNN-->GraphSAGE
本次要总结的是 论文 Inductive Representation Learning on Large Graphs,参考的实现代码链接code,本篇论文是GNN领域内一篇非常重要的论文,值得认真读下。论文动机和创新点将大图中的节点用低维度的稠密向量表示,已经被证明是非常有用的方法,但是现有的大部分方法,都是将图中的所有节点扔进模型中进行训练,本质还是直推式的,其训练得到的模型不容易推广到未见过的节点,或者一张新的图上。本论文涉及两个重要概念,分别如下: transductive:直推式,原创 2021-05-02 17:07:31 · 1847 阅读 · 1 评论 -
论文分享-- GCN -- Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
博客内容将首发在微信公众号"跟我一起读论文啦啦",上面会定期分享机器学习、深度学习、数据挖掘、自然语言处理等高质量论文,欢迎关注!本次要总结的论文是 Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering,论文链接GCN,参考的代码实现GCN-code。不得不说,读懂这篇论文难度较大,因为里面有许多数学推导,要了解较多的数学知识。本人数学一般,因此在读本论文的同时参考了网上大部分较优秀的讲解,这里会结原创 2020-10-05 01:02:27 · 3421 阅读 · 0 评论