机器学习-python
文章平均质量分 95
村头陶员外
这个作者很懒,什么都没留下…
展开
-
数据科学中常用的应用统计知识
元素:数据中最小单位样本:大型数据集中一个子集总体:一个大型数据集NNN(或者nnn):一般用NNN表示总体规模,nnn表示样本规模随机抽样:从总体中抽取元素到子集中分层抽样:对总体分层,并在每层中做随机抽样样本偏差:样本对总体作出了错误的估计xˉ\bar{x}xˉμ\muμ样本统计量:对抽取自大规模总体中的样本做计算,所得到的一些度量值,比如均值,方差等统计量数据分布:单个元素在数据集上的频数分布。原创 2023-10-21 14:17:08 · 365 阅读 · 0 评论 -
机器学习-->python常用知识点
本篇博文主要总结下机器学习中,利用python进行编程,必须知道,必须掌握,但是往往又忽视的一些知识点。标准Python的列表(list)中,元素本质是对象。 如:L = [1, 2, 3],需要3个指针和三个整数对象,对于数值运算比较浪费内存和CPU。 因此,Numpy提供了ndarray(N-dimensional array object)对象:存储单一数据类型的多维数组。使用array创原创 2017-07-24 15:42:45 · 838 阅读 · 0 评论 -
机器学习-->python 数据生成器总结
我们在学习机器学习算法时,经常需要对比不同的算法在不同的数据集上表现好坏,需要有按照不同的需求来自定义的生成一些数据集。本篇博文将总结python里面一些用来数据生成的包。最简单的等差数据和等比数据# 如果生成一定规则的数据,可以使用NumPy提供的专门函数 # arange函数类似于python的range函数:指定起始值、终止值和步长来创建数组 # 和Python的range类似,arang原创 2017-08-10 10:53:09 · 2378 阅读 · 0 评论 -
机器学习-->矢量化运算,矩阵运算,广播
在机器学习中,我们常常需要处理各式各样的数据,其中向量形式,矩阵形式的数据是经常遇见的。同时又经常需要对两个或者多个向量形式,矩阵形式的数据做元素级的操作处理。通常最简单无脑的办法就是用循环对数据一个个的进行处理。显然这种处理方式不仅费时费力而且写出来的代码给人感觉很繁琐。既然数据呈向量或者矩阵形式,为什么我们不把这种形式很好的加以利用呢?要知道矢量化的运算要比等价的纯python快上一两个数量级甚原创 2017-08-12 22:30:55 · 5650 阅读 · 1 评论