CGAL Mesh地形曲面提取等高线
本文演示如何提取等值高度来构建地形图。
示例
第一步是从三角剖分的所有面中提取经过该面的等值面,以线段的形式。下面的函数可以测试一个isovalue
是否穿过一个三角面,并提取它:
利用这些函数,我们可以创建一个线段图,稍后再处理成一组折线。为此,我们使用boost::adjacency_list
结构,并记录从端点位置到图顶点的映射关系。
下面的代码计算了50个均匀分布在点云最小和最大高度之间的等值线,并创建了一个包含所有等值线的图
#include<iostream>
#include<cmath>
#include<CGAL/Surface_mesh.h>
#include<CGAL/Surface_mesh/IO/PLY.h>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Projection_traits_xy_3.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <boost/graph/adjacency_list.hpp>
#include <CGAL/boost/graph/split_graph_into_polylines.h>
#include <CGAL/IO/WKT.h>
#include <CGAL/Constrained_Delaunay_triangulation_2.h>
#include <CGAL/Constrained_triangulation_plus_2.h>
#include <CGAL/Polyline_simplification_2/simplify.h>
#include <CGAL/Polyline_simplification_2/Squared_distance_cost.h>
#include <CGAL/Point_set_3.h>
#include <CGAL/Point_set_3/IO.h>
#include <CGAL/compute_average_spacing.h>
using Kernel = CGAL::Exact_predicates_inexact_constructions_kernel;
using Projection_traits = CGAL::Projection_traits_xy_3<Kernel>;
using Point_2 = Kernel::Point_2;
using Point_3 = Kernel::Point_3;
using Segment_3 = Kernel::Segment_3;
// Triangulated Irregular Network
// 不规则三角网
using TIN = CGAL::Delaunay_triangulation_2<Projection_traits>;
using Mesh = CGAL::Surface_mesh<Point_3>;
//
namespace PS = CGAL::Polyline_simplification_2;
using CDT_vertex_base = PS::Vertex_base_2<Projection_traits>;
using CDT_face_base = CGAL::Constrained_triangulation_face_base_2<Projection_traits>;
using CDT_TDS = CGAL::Triangulation_data_structure_2<CDT_vertex_base, CDT_face_base>;
using CDT = CGAL::Constrained_Delaunay_triangulation_2<Projection_traits, CDT_TDS>;
using CTP = CGAL::Constrained_triangulation_plus_2<CDT>;
#ifdef CGAL_LINKED_WITH_TBB
using Concurrency_tag = CGAL::Parallel_tag;
#else
using Concurrency_tag = CGAL::Sequential_tag;
#endif
//判断三角面是否与某个等值交叉
bool face_has_isovalue(TIN::Face_handle fh, double isovalue)
{
bool above = false, below = false;
for (int i = 0; i < 3; ++i)
{
// Face has isovalue if one of its vertices is above and another one below
// 如果面的其中一个顶点位于上方,另一个顶点位于下方,则面具有等值
if (fh->vertex(i)->point().z() > isovalue)
above = true;
if (fh->vertex(i)->point().z() < isovalue)
below = true;
}
return (above && below);
}
//在三角面上抽取某个等值线段
Segment_3 isocontour_in_face(TIN::Face_handle fh, double isovalue)
{
Point_3 source;
Point_3 target;
bool source_found = false;
for (int i = 0; i < 3; ++i)
{
Point_3 p0 = fh->vertex((i + 1) % 3)->point();
Point_3 p1 = fh->vertex((i + 2) % 3)->point();
// Check if the isovalue crosses segment (p0,p1)
//检查等值是否跨越线段 (p0,p1)即,三角形的某一条边
if ((p0.z() - isovalue) * (p1.z() - isovalue) > 0)
continue;
double zbottom = p0.z();
double ztop = p1.z();
if (zbottom > ztop)
{
std::swap(zbottom, ztop);
std::swap(p0, p1);
}
// Compute position of segment vertex
// 计算线段顶点的位置
double ratio = (isovalue - zbottom) / (ztop - zbottom);
Point_3 p = CGAL::barycenter(p0, (1 - ratio), p1, ratio);
if (source_found)
target = p;
else
{
source = p;
source_found = true;
}
}
return Segment_3(source, target);
}
template <typename Graph>
class Polylines_visitor
{
private:
std::vector<std::vector<Point_3> >& polylines;
Graph& graph;
public:
Polylines_visitor(Graph& graph, std::vector<std::vector<Point_3> >& polylines)
: polylines(polylines), graph(graph) { }
void start_new_polyline()
{
polylines.push_back(std::vector<Point_3>());
}
void add_node(typename Graph::vertex_descriptor vd)
{
polylines.back().push_back(graph[vd]);
}
void end_polyline()
{
// filter small polylines
// 过滤小的折线
if (polylines.back().size() < 50)
polylines.pop_back();
}
};
int main() {
Mesh mesh;
CGAL::IO::read_PLY("dtm.ply", mesh);
CGAL::Bbox_3 bbox = CGAL::bbox_3(mesh.points().begin(), mesh.points().end());
std::cout << "with:" << bbox.x_span() << "\nheight:" << bbox.y_span() << std::endl;
TIN tin(mesh.points().begin(), mesh.points().end());
std::array<double, 50> isovalues; // Contour 50 isovalues
for (std::size_t i = 0; i < isovalues.size(); ++i)
isovalues[i] = bbox.zmin() + ((i + 1) * (bbox.zmax() - bbox.zmin()) / (isovalues.size() - 2));
// First find on each face if they are crossed by some isovalues and
// extract segments in a graph
//首先在每个面上查找它们是否与某些等值交叉,并在图形中提取线段
// 定义一个无向图,顶点属性值存储Point3
using Segment_graph = boost::adjacency_list<boost::listS, boost::vecS, boost::undirectedS, Point_3>;
Segment_graph graph;
//定义点到图中顶点索引的映射
using Map_p2v = std::map<Point_3, Segment_graph::vertex_descriptor>;
Map_p2v map_p2v;
for (TIN::Face_handle vh : tin.finite_face_handles())
for (double iv : isovalues)
if (face_has_isovalue(vh, iv))
{
Segment_3 segment = isocontour_in_face(vh, iv);
for (const Point_3& p : { segment.source(), segment.target() })
{
// Only insert end points of segments once to get a well connected graph
// 只需插入一次线段的端点即可获得连接良好的图形
Map_p2v::iterator iter;
bool inserted;
std::tie(iter, inserted) = map_p2v.insert(std::make_pair(p, Segment_graph::vertex_descriptor()));
if (inserted)
{
//向图中插入点,并设置值
iter->second = boost::add_vertex(graph);
graph[iter->second] = p;
}
}
//向图中插入边
boost::add_edge(map_p2v[segment.source()], map_p2v[segment.target()], graph);
}
// Split segments into polylines
// 将线段分割为多段线
std::vector<std::vector<Point_3> > polylines;
Polylines_visitor<Segment_graph> visitor(graph, polylines);
CGAL::split_graph_into_polylines(graph, visitor);
std::cerr << polylines.size() << " polylines computed, with "
<< map_p2v.size() << " vertices in total" << std::endl;
// Output to WKT file
std::ofstream contour_ofile("contour.wkt");
contour_ofile.precision(18);
CGAL::IO::write_multi_linestring_WKT(contour_ofile, polylines);
contour_ofile.close();
// Construct constrained Delaunay triangulation with polylines as constraints
// 以折线作为约束构造约束型 Delaunay 三角剖分
// 计算平均间距
double spacing = CGAL::compute_average_spacing<Concurrency_tag>(mesh.points(), 6);
spacing *= 2;
CTP ctp;
for (const std::vector<Point_3>& poly : polylines)
ctp.insert_constraint(poly.begin(), poly.end());
// Simplification algorithm with limit on distance
// 具有距离限制的简化算法
PS::simplify(ctp, PS::Squared_distance_cost(), PS::Stop_above_cost_threshold(16 * spacing * spacing));
polylines.clear();
for (CTP::Constraint_id cid : ctp.constraints())
{
polylines.push_back(std::vector<Point_3>());
polylines.back().reserve(ctp.vertices_in_constraint(cid).size());
for (CTP::Vertex_handle vh : ctp.vertices_in_constraint(cid))
polylines.back().push_back(vh->point());
}
std::size_t nb_vertices
= std::accumulate(polylines.begin(), polylines.end(), std::size_t(0),
[](std::size_t size, const std::vector<Point_3>& poly) -> std::size_t
{ return size + poly.size(); });
std::cerr << nb_vertices
<< " vertices remaining after simplification ("
<< 100. * (nb_vertices / double(map_p2v.size())) << "%)" << std::endl;
// Output to WKT file
// 输出到 WKT 文件
std::ofstream simplified_ofile("simplified.wkt");
simplified_ofile.precision(18);
CGAL::IO::write_multi_linestring_WKT(simplified_ofile, polylines);
simplified_ofile.close();
return 0;
}