【HAL】Android Qcom Camera缩略名词汇总

本文介绍了手机相机图像处理中的关键技术,包括Bayer处理阶段、图像前端引擎、图像处理引擎等,并详细阐述了噪声处理、后处理及各种图像优化算法的工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • BPS(Bayer Processing Segments): Bayer处理阶段
  • IFE(Image front-end engine): 图像前端引擎。video/preview的Bayer处理;3A数据…
  • TFE(Thin Front End)
  • IPE(Image-processing engine): 图像处理引擎。NPS(ICA/ANR/TF) + PPS(CAC/LTM/ASF and color processing)
  • NPS: 噪声处理部分。PPS: 后处理部分。
  • ICA(Image Correction and Adjustment): 图像校正和调整。是一个硬件单元,主要用于由镜头和运动引起的几何扭曲。
  • ANR(Advanced Noise Reduction): 高级降噪。用于快照和视频模式的多通道空间噪声滤波过程。
  • TF(Temporal Filter): 时域滤波器。可消除图像中不必要的频率(噪声)。
  • CAC(Chromatic Aberration Correction): 色差校正。
  • LTM(Local Tone Mapping): 局部色调映射。根据局部亮度为每个像素应用色调映射增益,以提高局部可见度。
  • Gamma: 根据像素值为每个像素应用 Gamma 曲线。
  • ASF(Adaptive Spatial Filter): 自适应空域滤波器。
  • CTS/ITS :Android Camera Image Test Suite (ITS) is part of Android Compatibility Test Suite (CTS)
    Android相机图像测试套件(ITS)是Android兼容性测试套件(CTS)的一部分验证程序,包括验证图像内容的测试。
  • CVP(Computer Vision Processor): for object detection and tracking。
  • CSID(Camera Serial Interface Decoder Module): 相机串行接口解码器模块。
  • ABF: Adaptive Bayer Filter。在拜耳域上运行的自适应拜耳滤镜 (ABF) 采用双边滤波器,可在减少噪声的同时保留边缘和细节。ABF 直接置于坏点校正模块后,以便在处理的最初阶段进行降噪,从而防止噪声扩增。
  • WNR(Wavelet noise reduction): 小波降噪 。模块使用高级降噪方法降低亮度和色度噪点。六种等级的小波变换分别控制每个频率等级的噪声。WNR 第五层和第六层采用大幅小波降噪。在前四层执行的双边滤波可在降低噪声的同时保留边缘信息。
  • GIC(Green imbalance correction): 绿平衡校正。某些 Bayer 传感器的 Gb 和 Gr 通道可能出现严重失衡。此类失衡导致的伪像可能无法完全由Bayer 域中的 ABF 降噪模块校正。GIC可消除因传感器对 Gr 和 Gb 通道的不同灵敏度而造成的带状伪像。
  • NCS(The non camera sensor): The non camera sensorservice provides the accessing sensors include gyroscopes, accelerometers, gravity sensors, orientation sensors, proximity sensors.
  • CRM(Camera request manager)、CSL(Camera service layer)

待续…

<think>嗯,用户让我介绍一下Android Camera2 HAL3。我得先回忆一下自己对这个主题的了解。Android的相机架构经历过几次大的变化,特别是从Camera1到Camera2,HAL3应该是其中的关键部分。 首先,HAL是硬件抽象层,负责Android框架和硬件驱动程序之间的通信。Camera2 API是在Android 5.0引入的,取代了旧的Camera1 API。HAL3应该对应的是Camera2的支持,可能带来了更多的功能和更好的性能。 需要区分HAL1和HAL3的不同。HAL1可能对应旧的相机架构,而HAL3引入了更灵活的管道模型,允许应用更直接地控制相机硬件,比如手动调节曝光、对焦等。这可能涉及到像Request这样的概念,应用通过发送捕获请求来操作相机。 另外,HAL3可能支持更多的数据流,比如同时处理预览、拍照和录像,而不会像以前那样有性能问题。还有,可能提到的是每个请求可以配置不同的参数,并且有更精细的控制,比如每个帧的元数据。 记得HAL3引入了更结构化的元数据,使用类似标签的系统,让应用可以查询相机的能力,比如支持的分辨率、帧率范围等。这可能涉及到CameraCharacteristics类,应用在打开相机前会先获取这些信息。 可能还需要解释一下HAL3的管道模型,比如将相机设备视为一个处理管道,处理来自应用的请求,生成结果。每个请求会指定输出Surface,比如用于预览的SurfaceView或者用于拍照的ImageReader。 不过,用户可能还想知道HAL3带来的优势,比如低延迟、更好的性能、更高效的资源利用。同时,可能也需要注意兼容性问题,因为旧设备可能不支持HAL3,仍然使用HAL1,这会导致应用需要处理不同的情况。 另外,HAL3和CameraX的关系,CameraX是Jetpack库,可能基于HAL3,但提供了更简化的API,帮助开发者处理兼容性问题。不过用户的问题主要是HAL3本身,所以可能需要集中在HAL3的结构和功能上。 可能还需要提到一些关键类或接口,比如CameraDevice、CameraCaptureSession,以及如何通过HAL3进行会话的配置和请求的提交。比如,应用创建一个CaptureRequest,设置参数,然后提交给相机设备,然后处理返回的结果。 还有,HAL3如何处理3A(自动对焦、自动曝光、自动白平衡),允许应用更精细地控制这些过程,或者设置回调来监听状态变化。 需要确保技术术语使用正确,比如HAL3的正确名称,是否称为Camera HAL3,或者Android Camera HAL 3.0版本。可能正确的术语是Camera HAL3,对应Camera2 API的实现。 可能还要提到HAL3的配置方式,比如在设备厂商的实现中,如何通过HIDL接口或者AIDL进行交互,不过这部分可能属于系统内部细节,用户作为开发者可能更关注API层面的使用。 总结一下,回答的结构应该是先介绍HAL3是什么,它在Android相机架构中的位置,然后对比HAL1和HAL3的主要区别,接着详细说明HAL3的关键特性,比如管道模型、请求机制、元数据、多流支持等,最后可能提到开发中的使用方式或注意事项。 要避免错误的信息,比如HAL3是否支持某些特定功能,或者时间线是否正确。比如确认HAL3是从Android 5.0开始引入的,而Camera2 API也是同时推出的。此外,HAL3是否必须由设备支持,还是可选,可能需要说明兼容性情况,比如从某个Android版本开始要求必须支持HAL3,但实际设备可能仍有差异。 还要注意术语的正确使用,比如“管道模型”是否正确,或者是否有其他术语,比如“基于请求的模型”更准确。可能需要查阅相关资料确认,但根据记忆,HAL3确实引入了更灵活的请求处理模型,允许应用发送多个请求,每个请求可以有不同的设置,并且相机设备按顺序处理。 最后,确保回答结构清晰,分点说明主要概念,帮助用户逐步理解HAL3的结构和优势,同时结合实际开发中的例子,比如如何使用Camera2 API与HAL3交互,这样用户能更好地应用这些知识。</think>### Android Camera2 HAL3 介绍 #### 1. **基本概念** - **HAL(硬件抽象层)**:负责连接 Android 框架与硬件驱动,确保上层 API 与底层硬件解耦。 - **Camera2 API**:从 Android 5.0(Lollipop)引入,取代旧版 Camera1 API,提供更精细的控制能力。 - **HAL3**:专为 Camera2 API 设计的硬件抽象层(版本 3.x),支持**基于请求的模型**和**多数据流处理**。 --- #### 2. **HAL3 的核心改进(对比 HAL1)** | **特性** | **HAL1 (Camera1)** | **HAL3 (Camera2)** | |-------------------|---------------------------|-----------------------------| | **控制模式** | 基于“预设场景”的自动模式 | 基于“请求(Request)”的手动控制 | | **数据流** | 单数据流(预览/拍照二选一) | 多数据流并行(如同时预览+拍照) | | **性能** | 延迟高,资源利用率低 | 低延迟,更高效的硬件资源调度 | | **元数据** | 固定元数据,灵活性差 | 动态元数据(如每帧参数可配置) | --- #### 3. **HAL3 关键架构与组件** 1. **管道模型(Pipeline Model)** - 将相机硬件抽象为一个处理管道,接收来自应用的**捕获请求(CaptureRequest)**。 - 每个请求包含: - **参数配置**(如曝光时间、对焦模式)。 - **输出目标**(如 `Surface` 用于预览、拍照或录像)。 $$ \text{应用} \xrightarrow{\text{Request}} \text{相机管道} \xrightarrow{\text{Result}} \text{返回图像+元数据} $$ 2. **多流支持(Multi-Stream)** - 允许同时输出到多个 `Surface`(如预览 + 高分辨率拍照)。 - 硬件自动优化数据流路径(Bypass冗余处理)。 3. **动态元数据(Dynamic Metadata)** - 通过 `CameraCharacteristics` 查询设备能力(如支持的分辨率、帧率范围)。 - 每帧返回 `CaptureResult`,包含实时参数(如传感器时间戳、3A状态)。 --- #### 4. **开发中的核心类与流程** 1. **CameraDevice** - 表示物理相机设备,通过 `createCaptureSession()` 创建会话。 2. **CameraCaptureSession** - 管理数据流和请求,通过 `setRepeatingRequest()` 持续发送请求(如预览)。 3. **CaptureRequest** - 定义单次请求的参数(如对焦模式 `CONTROL_AF_MODE_AUTO`)。 ```java // 示例:创建一个拍照请求 CaptureRequest.Builder requestBuilder = cameraDevice.createCaptureRequest(CameraDevice.TEMPLATE_STILL_CAPTURE); requestBuilder.addTarget(imageReader.getSurface()); requestBuilder.set(CaptureRequest.CONTROL_AF_MODE, CaptureRequest.CONTROL_AF_MODE_CONTINUOUS_PICTURE); CaptureRequest request = requestBuilder.build(); ``` --- #### 5. **优势与挑战** - **优势**: - **精细控制**:支持手动调节 ISO、曝光时间等参数。 - **低延迟**:通过多流并行减少数据拷贝。 - **扩展性**:兼容深度相机、多摄像头等新型硬件。 - **挑战**: - **兼容性**:旧设备可能仅支持 HAL1,需用 `CameraManager.getCameraCharacteristics()` 检测能力。 - **复杂度**:需要处理异步回调、线程管理等细节。 --- #### 6. **实际应用建议** - **使用 CameraX**:Google 推荐的 Jetpack 库,基于 HAL3 封装,简化兼容性问题。 - **性能优化**: - 复用 `CaptureRequest` 减少开销。 - 限制输出分辨率(根据 `StreamConfigurationMap` 选择最优配置)。 --- #### 7. **总结** HAL3 是 Android 相机系统的重大升级,通过**请求-响应模型**和**多流架构**,为开发者提供了接近硬件层的控制能力。尽管学习曲线较高,但能实现更专业的拍摄功能(如 RAW 捕获、实时 HDR)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值