关于 Yolo 模型目标检测精度与训练关系的思考

本文探讨了燃气行业CV领域中,YOLO模型在雨雪天气下检测精度下降及训练数据不足的问题。提出通过图片增强、数据预处理和二次训练等方法提高模型性能,强调了使用专业术语标注训练数据的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于YOLO检测模型的CV业务常见问题:

        笔者当前从业与燃气行业CV安全生产领域,目前常见的问题有;1受雨雪天气影响Yolo 模型的检测精度下降。2 训练数据采集困难,导致模型能力泛化而精度不足。

一、雨雪天气视频模糊解决方案:

a. 图片增强,图片过滤;在数据源头改进,对质量图片进行预处理 丢弃不合格的图片;对合格但质量较低的图片在输入模型之前 镜像质量优化。

二、模型泛化精度不足解决方案。

a. yolo 预训练模型使用的数据集是通用数据集 ,一般不能直接拟合特定的客户场景;需要在确定客户的使用场景之后 ,从客户侧获取足够多的图片做二次训练。

b. 预训练的初始模型,就像一个六岁的幼儿;他能否认识所看到的物品(对象),取决于老师有没有准确的教过他这个物品的标准(专业)名称。当你告诉他苹果 是水果 ,梨也是水果。你再拿个苹果问他是是什么,他只能告诉你是水果。训练模型和教育幼儿类似,你要用专业人士的视角来标注训练数据。比如你标注建筑工地的图片,那标注上的词汇 应是建筑领域的专业词语,而不是一个大众 的泛泛认知。只有这样训练出来的模型 才能具备具体领域的专业知识。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值