平差之统计学基础(二)

单独观测(随机变量)的方差/标准差和均值:假如对1个观测量测上n次( l 1 − l n l_{1}-l_{n} l1ln),n趋近于无穷,也就是总体为n,则这n个数据呈正态分布 N ( μ l , σ l 2 ) \mathcal{N}\left(\mu_{l}, \sigma_l^{2}\right) N(μl,σl2)
但是,如果总体量很大,不能做到全部采样,那么就需要用样本来估计总体,假设从总体为n的总数中抽取k个样本,其中(n>>k).
参见:https://www.zhihu.com/question/22864111
比较总体样本和抽样样本

单个样本/的均值:
x ˉ l = E ( l ) = l 1 + . . . + l k k \bar{x}_l =E(l)=\frac{l_{1}+...+l_{k}}{k} xˉl=E(l)=kl1+...+lk
m(m趋近于正无穷)个/样本的均值/的均值,也就是样本均值的期望:
E ( x ˉ l ) = x ˉ l 1 + x ˉ l 2 + . . . + x ˉ l m m = μ l E(\bar{x}_l)=\frac{\bar{x}_{l1}+\bar{x}_{l2}+...+\bar{x}_{lm}}{m}=\mu_l E(xˉl)=mxˉl1+xˉl2+...+xˉlm=μl
单个样本的方差:
s l 2 = Var ⁡ ( l ) = E [ ( l − x ˉ l ) 2 ] = 1 k ∑ i = 1 k ( l i − x ˉ l ) 2 s_l^{2}=\operatorname{Var}(l)=E\left[(l-\bar{x}_l)^{2}\right]= \frac{1}{k} \sum_{i=1}^{k}\left(l_{i}-\bar{x}_l\right)^{2} sl2=Var(l)=E[(lxˉl)2]=k1i=1k(lixˉl)2
根据期望值运算律以及我在这篇文章中关于方差的推导:https://blog.csdn.net/mrzkilin/article/details/104645938,可得
s l 2 = Var ⁡ ( l ) = E [ ( l − x ˉ l ) 2 ] = E [ ( ( l − μ ) − ( x ˉ l − μ ) ) 2 ] = E [ ( l − μ ) 2 ] − ( x ˉ l − μ ) 2 = σ l 2 − E [ ( x ˉ l − μ l ) 2 ] = k − 1 k σ l 2 s_l^{2}=\operatorname{Var}(l)=E\left[(l-\bar{x}_l)^{2}\right]=E\left[((l-\mu)-(\bar{x}_l-\mu))^{2}\right]\\ =E\left[(l-\mu)^{2}\right]-(\bar{x}_l-\mu)^2=\sigma_l^{2}-E\left[(\bar{x}_l-\mu_l)^{2}\right]=\frac{k-1}{k}\sigma_l^2 sl2=Var(l)=E[(lxˉl)2]=E[((lμ)(xˉlμ))2]=E[(lμ)2](xˉlμ)2=σl2E[(xˉlμl)2]=kk1σl2
m个单个样本的均值的/方差,也就是样本均值的方差,也是算数平均值的方差:
s x ˉ l 2 = Var ⁡ ( x ˉ l ) = E [ ( x ˉ l − μ l ) 2 ] = 1 m ∑ i = 1 m ( x ˉ l − μ l ) 2 s_{\bar{x}_l}^{2}=\operatorname{Var}(\bar{x}_l)=E\left[(\bar{x}_l-\mu_l)^{2}\right]= \frac{1}{m} \sum_{i=1}^{m}\left(\bar{x}_l-\mu_l\right)^{2}\\ sxˉl2=Var(xˉl)=E[(xˉlμl)2]=m1i=1m(xˉlμl)2
根据方差的运算律以及 l 1 − l k l_{1}-l_{k} l1lk之间是独立同分布的随机变量(也就是方差标准差什么的都一样)
s x ˉ l 2 = Var ⁡ ( x ˉ l ) = Var ⁡ ( 1 k ( l 1 + l 2 + … + l k ) ) = 1 k 2 Var ⁡ ( l 1 + l 2 + … + l k ) = 1 k 2 [ Var ⁡ ( l 1 ) + Var ⁡ ( l 2 ) + … + Var ⁡ ( l k ) ] = 1 k 2 [ k Var ⁡ ( l ) ] = 1 k Var ⁡ ( l ) = s l 2 k \begin{aligned} s_{\bar{x}_l}^{2}=&\operatorname{Var}(\bar{x}_l)=\operatorname{Var}\left(\frac{1}{k}\left(l_{1}+l_{2}+\ldots+l_{k}\right)\right)=\frac{1}{k^{2}} \operatorname{Var}\left(l_{1}+l_{2}+\ldots+l_{k}\right)=\\ &\frac{1}{k^{2}}\left[\operatorname{Var}\left(l_{1}\right)+\operatorname{Var}\left(l_{2}\right)+\ldots+\operatorname{Var}\left(l_{k}\right)\right]=\frac{1}{k^{2}}\left[k \operatorname{Var}\left(l\right)\right]=\frac{1}{k} \operatorname{Var}\left(l\right)=\frac{s_{l}^2}{k} \end{aligned} sxˉl2=Var(xˉl)=Var(k1(l1+l2++lk))=k21Var(l1+l2++lk)=k21[Var(l1)+Var(l2)++Var(lk)]=k21[kVar(l)]=k1Var(l)=ksl2

m个单个样本的均值的/标准差,也是算数平均值的标准差,也叫标准误.
标准误:样本统计量的标准差,“样本均值的估计标准误差”,简称平均值标准误差(standard error of the mean, SEM),或平均数标准误差。
s x ˉ l = s l k s_{\bar{x}_l}=\frac{s_{l}}{\sqrt{k}} sxˉl=k sl
k为单个样本的大小(容量).


接下来介绍平差里跟普通统计学比较不一样的部分.
在平差里面,方差是用来衡量随机误差的分散度的.公式如下:
σ l 2 = E ( ε 2 ) = E { ( L − μ ) 2 } = E ( L ) 2 − μ 2 \sigma_{l}^{2}=E\left(\varepsilon^{2}\right)=E\left\{(L-\mu)^{2}\right\}=E(L)^{2}-\mu^{2} σl2=E(ε2)=E{(Lμ)2}=E(L)2μ2
ε \varepsilon ε:随机误差
L:观测值
μ \mu μ:观测值的期望值

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值