单独观测(随机变量)的方差/标准差和均值:假如对1个观测量测上n次(
l
1
−
l
n
l_{1}-l_{n}
l1−ln),n趋近于无穷,也就是总体为n,则这n个数据呈正态分布
N
(
μ
l
,
σ
l
2
)
\mathcal{N}\left(\mu_{l}, \sigma_l^{2}\right)
N(μl,σl2)
但是,如果总体量很大,不能做到全部采样,那么就需要用样本来估计总体,假设从总体为n的总数中抽取k个样本,其中(n>>k).
参见:https://www.zhihu.com/question/22864111
比较总体样本和抽样样本
单个样本/的均值:
x
ˉ
l
=
E
(
l
)
=
l
1
+
.
.
.
+
l
k
k
\bar{x}_l =E(l)=\frac{l_{1}+...+l_{k}}{k}
xˉl=E(l)=kl1+...+lk
m(m趋近于正无穷)个/样本的均值/的均值,也就是样本均值的期望:
E
(
x
ˉ
l
)
=
x
ˉ
l
1
+
x
ˉ
l
2
+
.
.
.
+
x
ˉ
l
m
m
=
μ
l
E(\bar{x}_l)=\frac{\bar{x}_{l1}+\bar{x}_{l2}+...+\bar{x}_{lm}}{m}=\mu_l
E(xˉl)=mxˉl1+xˉl2+...+xˉlm=μl
单个样本的方差:
s
l
2
=
Var
(
l
)
=
E
[
(
l
−
x
ˉ
l
)
2
]
=
1
k
∑
i
=
1
k
(
l
i
−
x
ˉ
l
)
2
s_l^{2}=\operatorname{Var}(l)=E\left[(l-\bar{x}_l)^{2}\right]= \frac{1}{k} \sum_{i=1}^{k}\left(l_{i}-\bar{x}_l\right)^{2}
sl2=Var(l)=E[(l−xˉl)2]=k1i=1∑k(li−xˉl)2
根据期望值运算律以及我在这篇文章中关于方差的推导:https://blog.csdn.net/mrzkilin/article/details/104645938,可得
s
l
2
=
Var
(
l
)
=
E
[
(
l
−
x
ˉ
l
)
2
]
=
E
[
(
(
l
−
μ
)
−
(
x
ˉ
l
−
μ
)
)
2
]
=
E
[
(
l
−
μ
)
2
]
−
(
x
ˉ
l
−
μ
)
2
=
σ
l
2
−
E
[
(
x
ˉ
l
−
μ
l
)
2
]
=
k
−
1
k
σ
l
2
s_l^{2}=\operatorname{Var}(l)=E\left[(l-\bar{x}_l)^{2}\right]=E\left[((l-\mu)-(\bar{x}_l-\mu))^{2}\right]\\ =E\left[(l-\mu)^{2}\right]-(\bar{x}_l-\mu)^2=\sigma_l^{2}-E\left[(\bar{x}_l-\mu_l)^{2}\right]=\frac{k-1}{k}\sigma_l^2
sl2=Var(l)=E[(l−xˉl)2]=E[((l−μ)−(xˉl−μ))2]=E[(l−μ)2]−(xˉl−μ)2=σl2−E[(xˉl−μl)2]=kk−1σl2
m个单个样本的均值的/方差,也就是样本均值的方差,也是算数平均值的方差:
s
x
ˉ
l
2
=
Var
(
x
ˉ
l
)
=
E
[
(
x
ˉ
l
−
μ
l
)
2
]
=
1
m
∑
i
=
1
m
(
x
ˉ
l
−
μ
l
)
2
s_{\bar{x}_l}^{2}=\operatorname{Var}(\bar{x}_l)=E\left[(\bar{x}_l-\mu_l)^{2}\right]= \frac{1}{m} \sum_{i=1}^{m}\left(\bar{x}_l-\mu_l\right)^{2}\\
sxˉl2=Var(xˉl)=E[(xˉl−μl)2]=m1i=1∑m(xˉl−μl)2
根据方差的运算律以及
l
1
−
l
k
l_{1}-l_{k}
l1−lk之间是独立同分布的随机变量(也就是方差标准差什么的都一样)
s
x
ˉ
l
2
=
Var
(
x
ˉ
l
)
=
Var
(
1
k
(
l
1
+
l
2
+
…
+
l
k
)
)
=
1
k
2
Var
(
l
1
+
l
2
+
…
+
l
k
)
=
1
k
2
[
Var
(
l
1
)
+
Var
(
l
2
)
+
…
+
Var
(
l
k
)
]
=
1
k
2
[
k
Var
(
l
)
]
=
1
k
Var
(
l
)
=
s
l
2
k
\begin{aligned} s_{\bar{x}_l}^{2}=&\operatorname{Var}(\bar{x}_l)=\operatorname{Var}\left(\frac{1}{k}\left(l_{1}+l_{2}+\ldots+l_{k}\right)\right)=\frac{1}{k^{2}} \operatorname{Var}\left(l_{1}+l_{2}+\ldots+l_{k}\right)=\\ &\frac{1}{k^{2}}\left[\operatorname{Var}\left(l_{1}\right)+\operatorname{Var}\left(l_{2}\right)+\ldots+\operatorname{Var}\left(l_{k}\right)\right]=\frac{1}{k^{2}}\left[k \operatorname{Var}\left(l\right)\right]=\frac{1}{k} \operatorname{Var}\left(l\right)=\frac{s_{l}^2}{k} \end{aligned}
sxˉl2=Var(xˉl)=Var(k1(l1+l2+…+lk))=k21Var(l1+l2+…+lk)=k21[Var(l1)+Var(l2)+…+Var(lk)]=k21[kVar(l)]=k1Var(l)=ksl2
m个单个样本的均值的/标准差,也是算数平均值的标准差,也叫标准误.
标准误:样本统计量的标准差,“样本均值的估计标准误差”,简称平均值标准误差(standard error of the mean, SEM),或平均数标准误差。
s
x
ˉ
l
=
s
l
k
s_{\bar{x}_l}=\frac{s_{l}}{\sqrt{k}}
sxˉl=ksl
k为单个样本的大小(容量).
接下来介绍平差里跟普通统计学比较不一样的部分.
在平差里面,方差是用来衡量随机误差的分散度的.公式如下:
σ
l
2
=
E
(
ε
2
)
=
E
{
(
L
−
μ
)
2
}
=
E
(
L
)
2
−
μ
2
\sigma_{l}^{2}=E\left(\varepsilon^{2}\right)=E\left\{(L-\mu)^{2}\right\}=E(L)^{2}-\mu^{2}
σl2=E(ε2)=E{(L−μ)2}=E(L)2−μ2
ε
\varepsilon
ε:随机误差
L:观测值
μ
\mu
μ:观测值的期望值